Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MicroRNA-mediated downregulation of mTOR/FGFR3 controls tumor growth induced by Src-related oncogenic pathways

Abstract

The tyrosine kinase c-Src is upregulated in various human cancers, but the molecular mechanisms underlying c-Src-mediated tumor growth remain unclear. Here we examined the involvement of microRNAs in the c-Src-mediated tumor growth. Microarray profiling revealed that c-Src activation downregulates a limited set of microRNAs, including miR-99a, which targets oncogenic mammalian target of rapamycin (mTOR) and fibroblast growth factor receptor 3 (FGFR3). Re-expression of miR-99a suppressed tumor growth of c-Src-transformed cells, and this effect was restored by the overexpression of mTOR. The downregulation of miR-99a was also observed in epidermal growth factor- and Ras-transformed cells, and it was suppressed by inhibiting the mitogen-activated protein kinase (MAPK) pathway. Furthermore, miR-99a downregulation is associated with mTOR/FGFR3 upregulation in various human lung cancer cells/tissues. The tumorigenicity of these cells was suppressed by the introduction of miR-99a. These findings suggest that the miR-99a-mTOR/FGFR3 pathway is crucial for controlling tumor growth in a wide range of human cancers that harbor upregulation of the Src-related oncogenic pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Ambros V . (2004). The functions of animal microRNAs. Nature 431: 350–355.

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP . (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP . (2009). MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown M, Cooper J . (1996). Regulation, substrates and functions of src. Biochim Biophys Acta 1287: 121–149.

    PubMed  Google Scholar 

  • Calin GA, Croce CM . (2006). MicroRNA signatures in human cancers. Nat Rev Cancer 6: 857–866.

    Article  CAS  PubMed  Google Scholar 

  • Catto JW, Miah S, Owen HC, Bryant H, Myers K, Dudziec E et al. (2009). Distinct microRNA alterations characterize high- and low-grade bladder cancer. Cancer Res 69: 8472–8481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doghman M, El Wakil A, Cardinaud B, Thomas E, Wang J, Zhao W et al. (2010). Regulation of insulin-like growth factor-mammalian target of rapamycin signaling by microRNA in childhood adrenocortical tumors. Cancer Res 70: 4666–4675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelman JA . (2009). Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9: 550–562.

    Article  CAS  PubMed  Google Scholar 

  • Esquela-Kerscher A, Slack FJ . (2006). Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6: 259–269.

    Article  CAS  PubMed  Google Scholar 

  • Eswarakumar VP, Lax I, Schlessinger J . (2005). Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16: 139–149.

    Article  CAS  PubMed  Google Scholar 

  • Fornari F, Milazzo M, Chieco P, Negrini M, Calin GA, Grazi GL et al. (2010). MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 70: 5184–5193.

    Article  CAS  PubMed  Google Scholar 

  • Frame M . (2002). Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta 1602: 114–130.

    CAS  PubMed  Google Scholar 

  • Gao W, Shen H, Liu L, Xu J, Shu Y . (2010). MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol (e-pub ahead of print 17 February 2011; DOI:10.1007/s00432-011-0976-2).

    Article  CAS  PubMed  Google Scholar 

  • Guertin DA, Sabatini DM . (2007). Defining the role of mTOR in cancer. Cancer Cell 12: 9–22.

    Article  CAS  PubMed  Google Scholar 

  • Hakak Y, Martin GS . (1999). Ubiquitin-dependent degradation of active Src. Curr Biol 9: 1039–1042.

    Article  CAS  PubMed  Google Scholar 

  • Hay N . (2005). The Akt-mTOR tango and its relevance to cancer. Cancer Cell 8: 179–183.

    Article  CAS  PubMed  Google Scholar 

  • Hay N, Sonenberg N . (2004). Upstream and downstream of mTOR. Genes Dev 18: 1926–1945.

    Article  CAS  PubMed  Google Scholar 

  • He L, Hannon GJ . (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev 5: 522–531.

    Article  CAS  Google Scholar 

  • Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K . (2010). STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 39: 493–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingley E . (2008). Src family kinases: regulation of their activities, levels and identification of new pathways. Biochim Biophys Acta 1784: 56–65.

    Article  CAS  PubMed  Google Scholar 

  • Irby R, Mao W, Coppola D, Kang J, Loubeau J, Trudeau W et al. (1999). Activating SRC mutation in a subset of advanced human colon cancers. Nat Genet 21: 187–190.

    Article  CAS  PubMed  Google Scholar 

  • Irby R, Yeatman T . (2000). Role of Src expression and activation in human cancer. Oncogene 19: 5636–5642.

    Article  CAS  PubMed  Google Scholar 

  • Ishizawar R, Parsons S . (2004). c-Src and cooperating partners in human cancer. Cancer Cell 6: 209–214.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Shen Y, Ichikawa H, Antes T, Goldberg GS . (2009). Regulation of miRNA expression by Src and contact normalization: effects on nonanchored cell growth and migration. Oncogene 28: 4272–4283.

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Cheng H, Roberts TM, Zhao JJ . (2009). Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8: 627–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menon S, Manning BD . (2008). Common corruption of the mTOR signaling network in human tumors. Oncogene 27 (Suppl 2): S43–S51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nada S, Okada M, MacAuley A, Cooper JA, Nakagawa H . (1991). Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature 351: 69–72.

    Article  CAS  PubMed  Google Scholar 

  • Nagaraja AK, Creighton CJ, Yu Z, Zhu H, Gunaratne PH, Reid JG et al. (2010). A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol 24: 447–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagayama K, Kohno T, Sato M, Arai Y, Minna JD, Yokota J . (2007). Homozygous deletion scanning of the lung cancer genome at a 100-kb resolution. Genes Chromosomes Cancer 46: 1000–1010.

    Article  CAS  PubMed  Google Scholar 

  • Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH et al. (2008). MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res 14: 2690–2695.

    Article  CAS  PubMed  Google Scholar 

  • Noro R, Gemma A, Kosaihira S, Kokubo Y, Chen M, Seike M et al. (2006). Gefitinib (IRESSA) sensitive lung cancer cell lines show phosphorylation of Akt without ligand stimulation. BMC Cancer 6: 277.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nozawa H, Watanabe T, Nagawa H . (2007). Phosphorylation of ribosomal p70 S6 kinase and rapamycin sensitivity in human colorectal cancer. Cancer Lett 251: 105–113.

    Article  CAS  PubMed  Google Scholar 

  • Okada M, Nada S, Yamanashi Y, Yamamoto T, Nakagawa H . (1991). CSK: a protein-tyrosine kinase involved in regulation of src family kinases. J Biol Chem 266: 24249–24252.

    CAS  PubMed  Google Scholar 

  • Oneyama C, Hikita T, Nada S, Okada M . (2008). Functional dissection of transformation by c-Src and v-Src. Genes Cells 13: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Ong SH, Hadari YR, Gotoh N, Guy GR, Schlessinger J, Lax I . (2001). Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins. Proc Natl Acad Sci USA 98: 6074–6079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penuel E, Martin G . (1999). Transformation by v-Src: Ras-MAPK and PI3K-mTOR mediate parallel pathways. Mol Biol Cell 10: 1693–1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petroulakis E, Mamane Y, Le Bacquer O, Shahbazian D, Sonenberg N . (2006). mTOR signaling: implications for cancer and anticancer therapy. Br J Cancer 94: 195–199.

    Article  CAS  PubMed  Google Scholar 

  • Sabatini DM . (2006). mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 6: 729–734.

    Article  CAS  PubMed  Google Scholar 

  • Shenouda SK, Alahari SK . (2009). MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metast Rev 28: 369–378.

    Article  CAS  Google Scholar 

  • Trudel S, Ely S, Farooqi Y, Affer M, Robbiani DF, Chesi M et al. (2004). Inhibition of fibroblast growth factor receptor 3 induces differentiation and apoptosis in t(4;14) myeloma. Blood 103: 3521–3528.

    Article  CAS  PubMed  Google Scholar 

  • van Rhijn BW, Lurkin I, Radvanyi F, Kirkels WJ, van der Kwast TH, Zwarthoff EC . (2001). The fibroblast growth factor receptor 3 (FGFR3) mutation is a strong indicator of superficial bladder cancer with low recurrence rate. Cancer Res 61: 1265–1268.

    CAS  PubMed  Google Scholar 

  • Ventura A, Jacks T . (2009). MicroRNAs and cancer: short RNAs go a long way. Cell 136: 586–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vojtechova M, Tureckova J, Kucerova D, Sloncova E, Vachtenheim J, Tuhackova Z . (2008). Regulation of mTORC1 signaling by Src kinase activity is Akt1-independent in RSV-transformed cells. Neoplasia 10: 99–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang FZ, Weber F, Croce C, Liu CG, Liao X, Pellett PE . (2008). Human cytomegalovirus infection alters the expression of cellular microRNA species that affect its replication. J Virol 82: 9065–9074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI . (2008). Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res 14: 2588–2592.

    Article  CAS  PubMed  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN . (2006). TOR signaling in growth and metabolism. Cell 124: 471–484.

    Article  CAS  PubMed  Google Scholar 

  • Yamada H, Yanagisawa K, Tokumaru S, Taguchi A, Nimura Y, Osada H et al. (2008). Detailed characterization of a homozygously deleted region corresponding to a candidate tumor suppressor locus at 21q11–21 in human lung cancer. Genes Chromosomes Cancer 47: 810–818.

    Article  CAS  PubMed  Google Scholar 

  • Yeatman TJ . (2004). A renaissance for SRC. Nat Rev Cancer 4: 470–480.

    Article  CAS  PubMed  Google Scholar 

  • Yokota J, Kohno T . (2004). Molecular footprints of human lung cancer progression. Cancer Sci 95: 197–204.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs A Imamoto, T Akagi and M Yutsudo for generous gifts of reagents. This work was supported by a Grant-in-aid for Young Scientists from the Ministry of Education, Culture, Sports, Science and Technology of Japan and The Exciting Leading-Edge Research Project at Osaka University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Oneyama.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oneyama, C., Ikeda, J., Okuzaki, D. et al. MicroRNA-mediated downregulation of mTOR/FGFR3 controls tumor growth induced by Src-related oncogenic pathways. Oncogene 30, 3489–3501 (2011). https://doi.org/10.1038/onc.2011.63

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.63

Keywords

This article is cited by

Search

Quick links