Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Targeting of the adaptor protein Tab2 as a novel approach to revert tamoxifen resistance in breast cancer cells

A Corrigendum to this article was published on 04 October 2012

Abstract

Pharmacological resistance is a serious threat to the clinical success of hormone therapy for breast cancer. The antiproliferative response to antagonistic drugs such as tamoxifen (Tam) critically depends on the recruitment of NCoR/SMRT corepressors to estrogen receptor alpha (ERα) bound to estrogen target genes. Under certain circumstances, as demonstrated in the case of interleukin-1β (IL-1β) treatment, the protein Tab2 interacts with ERα/NCoR and causes dismissal of NCoR from these genes, leading to loss of the antiproliferative response. In Tam-resistant (TamR) ER-positive breast cancer cells, we observed that Tab2 presents a shift in mobility on sodium dodecyl sulfate--PAGE (SDS-PAGE) similar to that seen in MCF7 wt upon stimulation with IL-1β, suggesting constitutive activation. Accordingly, TamR treatment with Tab2-specific short interfering RNA, restored the antiproliferative response to Tam in these cells. As Tab2 is known to directly interact with the N-terminal domain of ERα, we synthesized a peptide composed of a 14-aa motif of this domain, which effectively competes with ERα/Tab2 interaction in pull-down and co-immunoprecipitation experiments, fused to the carrier TAT peptide to allow internalization. Treatment of TamR cells with this peptide resulted in partial recovery of the antiproliferative response to Tam, suggesting a strategy to revert pharmacological resistance in breast cancer. Silencing of Tab2 in TamR cells by siRNA caused modulation of a gene set related to the control of cell cycle and extensively connected to BRCA1 in a functional network. These genes were able to discern two groups of patients, from a published data set of Tam-treated breast cancer profiles, with significantly different disease-free survival. Altogether, our data implicate Tab2 as a mediator of resistance to endocrine therapy and as a potential new target to reverse pharmacological resistance and potentiate antiestrogen action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

4OHT:

4-OH-tamoxifen

AI:

aromatase inhibitors

AR:

androgen receptor

E2:

17β-estradiol

ERα:

estrogen receptor α

IL-1β:

inteleukin-1β

PgR:

progesterone receptor

SERMs:

selective estrogen receptor modulators

Tam:

tamoxifen

TamR:

tamoxifen-resistant cells

References

  • Baek SH, Ohgi KA, Rose DW, Koo EH, Glass CK, Rosenfeld MG . (2002). Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappaB and beta-amyloid precursor protein. Cell 110: 55–67.

    Article  CAS  PubMed  Google Scholar 

  • Broglie P, Matsumoto K, Akira S, Brautigan DL, Ninomiya-Tsuji J . (2010). Transforming growth factor beta-activated kinase 1 (TAK1) kinase adaptor, TAK1-binding protein 2, plays dual roles in TAK1 signaling by recruiting both an activator and an inhibitor of TAK1 kinase in tumor necrosis factor signaling pathway. J Biol Chem 285: 2333–2339.

    Article  CAS  PubMed  Google Scholar 

  • Carroll JS, Lynch DK, Swarbrick A, Renoir JM, Sarcevic B, Daly RJ et al. (2003). p27(Kip1) induces quiescence and growth factor insensitivity in tamoxifen-treated breast cancer cells. Cancer Res 63: 4322–4326.

    CAS  PubMed  Google Scholar 

  • Cicatiello L, Mutarelli M, Grober OM, Paris O, Ferraro L, Ravo M et al. (2010). Estrogen receptor alpha controls a gene network in luminal-like breast cancer cells comprising multiple transcription factors and microRNAs. Am J Pathol 176: 2113–2130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cicatiello L, Scafoglio C, Altucci L, Cancemi M, Natoli G, Facchiano A et al. (2004). A genomic view of estrogen actions in human breast cancer cells by expression profiling of the hormone-responsive transcriptome. J Mol Endocrinol 32: 719–775.

    Article  CAS  PubMed  Google Scholar 

  • Dowsett M, Cuzick J, Ingle J, Coates A, Forbes J, Bliss J et al. (2010). Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. J Clin Oncol 28: 509–518.

    Article  CAS  PubMed  Google Scholar 

  • Early Breast Cancer Trialists’ Collaborative Group (2005). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365: 1687–1717.

    Article  Google Scholar 

  • Frankel LB, Lykkesfeldt AE, Hansen JB, Stenvang J . (2007). Protein kinase C alpha is a marker for antiestrogen resistance and is involved in the growth of tamoxifen resistant human breast cancer cells. Breast Cancer Res Treat 104: 165–179.

    Article  CAS  PubMed  Google Scholar 

  • Frogne T, Jepsen JS, Larsen SS, Fog CK, Brockdorff BL, Lykkesfeldt AE . (2005). Antiestrogen-resistant human breast cancer cells require activated protein kinase B/Akt for growth. Endocr Relat Cancer 12: 599–614.

    Article  CAS  PubMed  Google Scholar 

  • Hackshaw A, Roughton M, Forsyth S, Monson K, Reczko K, Sainsbury R et al. (2011). Long-term benefits of 5 years of tamoxifen: 10-year follow-up of a large randomized trial in women at least 50 years of age with early breast cancer. J Clin Oncol 29: 1657–1663.

    Article  PubMed  Google Scholar 

  • Henriksen KL, Rasmussen BB, Lykkesfeld AE, Møller S, Ejlertsen B, Mouridsen HT . (2009). An ER activity profile including ER, PR, Bcl-2 and IGF-IR may have potential as selection criterion for letrozole or tamoxifen treatment of advanced breast cancer. Acta Oncol 48: 522–531.

    Article  CAS  PubMed  Google Scholar 

  • Hughes-Davies L, Caldas C, Wishart GC . (2009). Tamoxifen: the drug that came in from the cold. Br J Cancer 101: 875–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen MP, Foekens JA, van Staveren IL, Dirkzwager-Kiel MM, Ritstier K, Look MP et al. (2005). Molecular classification of tamoxifen-resistant breast carcinomas by gene expression profiling. J Clin Oncol 23: 732–740.

    Article  CAS  PubMed  Google Scholar 

  • Keeton EK, Brown M . (2005). Cell cycle progression stimulated by tamoxifen-bound estrogen receptor-alpha and promoter-specific effects in breast cancer cells deficient in N-CoR and SMRT. Mol Endocrinol 19: 1543–1554.

    Article  CAS  PubMed  Google Scholar 

  • Lavinsky RM, Jepsen K, Heinzel T, Torchia J, Mullen TM, Schiff R et al. (1998). Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci USA 95: 2920–1925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YH, Bedford MT, Stallcup MR . (2001). Regulated recruitment of tumor suppressor BRCA1 to the p21 gene by coactivator methylation. Genes Dev 25: 176–188.

    Article  Google Scholar 

  • Loi S, Haibe-Kains B, Desmedt C, Wirapati P, Lallemand F, Tutt AM et al. (2008). Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen. BMC Genomics 9: 239.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lykkesfeldt AE, Briand P . (1986). Indirect mechanism of oestradiol stimulation of cell proliferation of human breast cancer cell lines. Br J Cancer 53: 29–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen MW, Reiter BE, Larsen SS, Briand P, Lykkesfeldt AE . (1997). Estrogen receptor messenger RNA splice variants are not involved in antiestrogen resistance in sublines of MCF-7 human breast cancer cells. Cancer Res 57: 585–589.

    CAS  PubMed  Google Scholar 

  • Mendoza H, Campbell DG, Burness K, Hastie J, Ronkina N, Shim JH et al. (2008). Roles for TAB1 in regulating the IL-1-dependent phosphorylation of the TAB3 regulatory subunit and activity of the TAK1 complex. Biochem J 409: 711–722.

    Article  CAS  PubMed  Google Scholar 

  • Musgrove EA, Sutherland RL . (2009). Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9: 631–643.

    Article  CAS  PubMed  Google Scholar 

  • Nabha SM, Glaron S, Hong M, Lykkesfeldt AE, Schiff R, Osborne K et al. (2005). Upregulation of PKC-δ contributes to antiestrogen resistance in mammary tumor cells. Oncogene 24: 3166–3176.

    Article  CAS  PubMed  Google Scholar 

  • Ochsner SA, Steffen DL, Hilsenbeck SG, Chen ES, Watkins CM, McKenna NJ . (2009). GEMS (Gene Expression MetaSignatures), a web resource for querying meta-analysis of expression microarray datasets: 17β-estradiol in MCF-7 cells. Cancer Res 69: 23–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua SA et al. (2003). Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst 95: 353–361.

    Article  CAS  PubMed  Google Scholar 

  • Pancholi S, Lykkesfeldt AE, Hilmi C, Banerjee S, Leary A, Drury S et al. (2008). ERBB2 influences the subcellular localization of the estrogen receptor in tamoxifen-resistant MCF-7 cells leading to the activation of AKT and RPS6KA2. Endocr Relat Cancer 15: 985–1002.

    Article  CAS  PubMed  Google Scholar 

  • Patel LN, Zaro JL, Shen WC . (2007). Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res 24: 1977–1992.

    Article  CAS  PubMed  Google Scholar 

  • Perissi V, Jepsen K, Glass CK, Rosenfeld MG . (2010). Deconstructing repression: evolving models of co-repressor action. Nat Rev Genet 11: 109–123.

    Article  CAS  PubMed  Google Scholar 

  • Perissi V, Rosenfeld MG . (2005). Controlling nuclear receptors: the circular logic of cofactor cycles. Nat Rev Mol Cell Biol 6: 542–554.

    Article  CAS  PubMed  Google Scholar 

  • Privalsky ML . (2004). The role of corepressors in transcriptional regulation by nuclear hormone receptors. Annu Rev Physiol 66: 315–360.

    Article  CAS  PubMed  Google Scholar 

  • Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ et al. (2005). Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23: 94–101.

    Article  CAS  PubMed  Google Scholar 

  • Sardi SP, Murtie J, Koirala S, Patten BA, Corfas G . (2006). Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell 127: 185–197.

    Article  CAS  PubMed  Google Scholar 

  • Schiff R, Massarweh SA, Shou J, Bharwani L, Arpino G, Rimawi M et al. (2005). Advanced concepts in estrogen receptor biology and breast cancer endocrine resistance: implicated role of growth factor signaling and estrogen receptor coregulators. Cancer Chemother Pharmacol 56 Suppl 1: 10–20.

    Article  PubMed  Google Scholar 

  • Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA et al. (1998). The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95: 927–937.

    Article  CAS  PubMed  Google Scholar 

  • Shin MS, Shinghirunnusorn P, Sugishima Y, Nishimura M, Suzuki S, Koizumi K et al. (2009). Cross interference with TNF-alpha-induced TAK1 activation via EGFR-mediated p38 phosphorylation of TAK1-binding protein 1. Biochim Biophys Acta 1793: 1156–1164.

    Article  CAS  PubMed  Google Scholar 

  • Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H et al. (2004). Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 96: 926–935.

    Article  CAS  PubMed  Google Scholar 

  • Smyth GK, Michaud J, Scott HS . (2005). Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21: 2067–2075.

    Article  CAS  PubMed  Google Scholar 

  • Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J et al. (2006). Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98: 262–272.

    Article  CAS  PubMed  Google Scholar 

  • Takaesu G, Kishida S, Hiyama A, Yamaguchi K, Shibuya H, Irie K et al. (2000). TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell 5: 649–658.

    Article  CAS  PubMed  Google Scholar 

  • Yue W, Fan P, Wang J, Li Y, Santen RJ . (2007). Mechanisms of acquired resistance to endocrine therapy in hormone-dependent breast cancer cells. J Steroid Biochem Mol Biol 106: 102–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu P, Baek SH, Bourk EM, Ohgi KA, Garcia-Bassets I, Sanjo H et al. (2006). Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway. Cell 124: 615–629.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from PRIN (2008PC9CFW_002) and from the Associazione Italiana per la Ricerca sul Cancro (Grant number IG9397), and in part by the public grant ‘ERSF -DOCUP 2000-2006 (Misura 3.4)’ - hitechplat project. LR is a CRT Fondazione Lagrange (Turin) fellow. AP was supported in part by the Associazione Sviluppo Piemonte (Turin). EG was a CRT Fondazione Lagrange (Turin) fellow and was supported in part by a Compagnia di San Paolo (Turin) grant and by a UICC travel fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M De Bortoli.

Ethics declarations

Competing interests

Drs Caizzi, Agati and Ricci received compensation for this work by the Bioindustry Park Silvano Fumero S.p.A, owner of the Patent IT TO20080989. Drs Cutrupi, Reineri, Panetto and De Bortoli are inventors of the Patent IT TO20080989. Drs Grosso, Friard, Scatolini, Chiorino and Lykkesfeldt declare no potential conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cutrupi, S., Reineri, S., Panetto, A. et al. Targeting of the adaptor protein Tab2 as a novel approach to revert tamoxifen resistance in breast cancer cells. Oncogene 31, 4353–4361 (2012). https://doi.org/10.1038/onc.2011.627

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.627

Keywords

This article is cited by

Search

Quick links