Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The transcriptional coactivators megakaryoblastic leukemia 1/2 mediate the effects of loss of the tumor suppressor deleted in liver cancer 1

Abstract

Deleted in Liver Cancer 1 (DLC1) is a tumor suppressor whose allele is lost in 50% of liver, breast, lung and 70% of colon cancers. Here, we show that the transcriptional coactivators Megakaryoblastic Leukemia 1 and 2 (MKL1/2) are constitutively localized to the nucleus in hepatocellular and mammary carcinoma cells that lack DLC1. Moreover, DLC1 loss and MKL1 nuclear localization correlate in primary human hepatocellular carcinoma. Nuclear accumulation of MKL1 in DLC1-deficient cancer cells is accomplished by activation of the RhoA/actin signaling pathway and concomitant impairment of MKL1 phosphorylation, which results in constitutive activation of MKL1/2 target genes. We provide evidence that MKL1/2 mediates cancerous transformation in DLC1-deficient hepatocellular and mammary carcinoma cells. Depletion of MKL1/2 suppresses cell migration, cell proliferation and anchorage-independent cell growth induced by DLC1 loss.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Cen B, Selvaraj A, Burgess RC, Hitzler JK, Ma Z, Morris SW et al. (2003). Megakaryoblastic leukemia 1, a potent transcriptional coactivator for serum response factor (SRF), is required for serum induction of SRF target genes. Mol Cell Biol 23: 6597–6608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark EA, Golub TR, Lander ES, Hynes RO . (2000). Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406: 532–535.

    Article  CAS  PubMed  Google Scholar 

  • Farazi PA, DePinho RA . (2006). Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6: 674–687.

    Article  CAS  PubMed  Google Scholar 

  • Friedl P, Wolf K . (2003). Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3: 362–374.

    Article  CAS  PubMed  Google Scholar 

  • Giehl K . (2005). Oncogenic Ras in tumour progression and metastasis. Biol Chem 386: 193–205.

    CAS  PubMed  Google Scholar 

  • Gollob JA, Wilhelm S, Carter C, Kelley SL . (2006). Role of Raf kinase in cancer: therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway. Semin Oncol 33: 392–406.

    Article  CAS  PubMed  Google Scholar 

  • Gomez del Pulgar T, Benitah SA, Valeron PF, Espina C, Lacal JC . (2005). Rho GTPase expression in tumourigenesis: evidence for a significant link. Bioessays 27: 602–613.

    Article  PubMed  Google Scholar 

  • Goodison S, Yuan J, Sloan D, Kim R, Li C, Popescu NC et al. (2005). The RhoGAP protein DLC-1 functions as a metastasis suppressor in breast cancer cells. Cancer Res 65: 6042–6053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hakem A, Sanchez-Sweatman O, You-Ten A, Duncan G, Wakeham A, Khokha R et al. (2005). RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Dev 19: 1974–1979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanna M, Liu H, Amir J, Sun Y, Morris SW, Siddiqui MA et al. (2009). Mechanical regulation of the proangiogenic factor CCN1/CYR61 gene requires the combined activities of MRTF-A and CREB-binding protein histone acetyltransferase. J Biol Chem 284: 23125–23136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heering J, Erlmann P, Olayioye MA . (2009). Simultaneous loss of the DLC1 and PTEN tumor suppressors enhances breast cancer cell migration. Exp Cell Res 315: 2505–2514.

    Article  CAS  PubMed  Google Scholar 

  • Jaffe AB, Hall A . (2005). Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21: 247–269.

    Article  CAS  PubMed  Google Scholar 

  • Knoll B . (2010). Actin-mediated gene expression in neurons: the MRTF-SRF connection. Biol Chem 391: 591–597.

    Article  PubMed  Google Scholar 

  • Knoll B, Kretz O, Fiedler C, Alberti S, Schutz G, Frotscher M et al. (2006). Serum response factor controls neuronal circuit assembly in the hippocampus. Nat Neurosci 9: 195–204.

    Article  PubMed  Google Scholar 

  • Lahoz A, Hall A . (2008). DLC1: a significant GAP in the cancer genome. Genes Dev 22: 1724–1730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SM, Vasishtha M, Prywes R . (2010). Activation and repression of cellular immediate early genes by serum response factor cofactors. J Biol Chem 285: 22036–22049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A et al. (1999). Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285: 895–898.

    Article  CAS  PubMed  Google Scholar 

  • Mattila PK, Lappalainen P . (2008). Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9: 446–454.

    Article  CAS  PubMed  Google Scholar 

  • Mazzocca A, Fransvea E, Dituri F, Lupo L, Antonaci S, Giannelli G . (2010). Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma. Hepatology 51: 523–534.

    Article  CAS  PubMed  Google Scholar 

  • Medjkane S, Perez-Sanchez C, Gaggioli C, Sahai E, Treisman R . (2009). Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis. Nat Cell Biol 11: 257–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miano JM, Long X, Fujiwara K . (2007). Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus. Am J Physiol Cell Physiol 292: C70–C81.

    Article  CAS  PubMed  Google Scholar 

  • Miralles F, Posern G, Zaromytidou AI, Treisman R . (2003). Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113: 329–342.

    Article  CAS  PubMed  Google Scholar 

  • Morin P, Flors C, Olson MF . (2009). Constitutively active RhoA inhibits proliferation by retarding G(1) to S phase cell cycle progression and impairing cytokinesis. Eur J Cell Biol 88: 495–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muehlich S, Cicha I, Garlichs CD, Krueger B, Posern G, Goppelt-Struebe M . (2007). Actin-dependent regulation of connective tissue growth factor. Am J Physiol Cell Physiol 292: C1732–C1738.

    Article  CAS  PubMed  Google Scholar 

  • Muehlich S, Wang R, Lee SM, Lewis TC, Dai C, Prywes R . (2008). Serum-induced phosphorylation of the serum response factor coactivator MKL1 by the extracellular signal-regulated kinase 1/2 pathway inhibits its nuclear localization. Mol Cell Biol 28: 6302–6313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pipes GC, Creemers EE, Olson EN . (2006). The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes Dev 20: 1545–1556.

    Article  CAS  PubMed  Google Scholar 

  • Porter KE, Turner NA, O'Regan DJ, Balmforth AJ, Ball SG . (2004). Simvastatin reduces human atrial myofibroblast proliferation independently of cholesterol lowering via inhibition of RhoA. Cardiovasc Res 61: 745–755.

    Article  CAS  PubMed  Google Scholar 

  • Prange W, Breuhahn K, Fischer F, Zilkens C, Pietsch T, Petmecky K et al. (2003). Beta-catenin accumulation in the progression of human hepatocarcinogenesis correlates with loss of E-cadherin and accumulation of p53, but not with expression of conventional WNT-1 target genes. J Pathol 201: 250–259.

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj A, Prywes R . (2004). Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent. BMC Mol Biol 5: 13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singer S, Ehemann V, Brauckhoff A, Keith M, Vreden S, Schirmacher P et al. (2007). Protumorigenic overexpression of stathmin/Op18 by gain-of-function mutation in p53 in human hepatocarcinogenesis. Hepatology 46: 759–768.

    Article  CAS  PubMed  Google Scholar 

  • Truong H, Danen EH . (2009). Integrin switching modulates adhesion dynamics and cell migration. Cell Adh Migr 3: 179–181.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vartiainen MK, Guettler S, Larijani B, Treisman R . (2007). Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316: 1749–1752.

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H et al. (2004). BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64: 7099–7109.

    Article  CAS  PubMed  Google Scholar 

  • Wong CM, Yam JW, Ching YP, Yau TO, Leung TH, Jin DY et al. (2005). Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma. Cancer Res 65: 8861–8868.

    Article  CAS  PubMed  Google Scholar 

  • Xie D, Nakachi K, Wang H, Elashoff R, Koeffler HP . (2001). Elevated levels of connective tissue growth factor, WISP-1, and CYR61 in primary breast cancers associated with more advanced features. Cancer Res 61: 8917–8923.

    CAS  PubMed  Google Scholar 

  • Xue W, Krasnitz A, Lucito R, Sordella R, Vanaelst L, Cordon-Cardo C et al. (2008). DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma. Genes Dev 22: 1439–1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan BZ, Miller MJ, Keck CL, Zimonjic DB, Thorgeirsson SS, Popescu NC . (1998). Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP. Cancer Res 58: 2196–2199.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Scott Lowe for the DLC1 knockdown hepatocytes and Dr Monilola Olayioye for DLC1 vectors. Breast carcinoma cell lines were kindly provided by Dr Ramon Parsons. This work was funded by grant MU 2737/2-1 from the German Research Foundation (DFG) to SM and grant CA050329 from the National Cancer Institute to RP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Muehlich.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muehlich, S., Hampl, V., Khalid, S. et al. The transcriptional coactivators megakaryoblastic leukemia 1/2 mediate the effects of loss of the tumor suppressor deleted in liver cancer 1. Oncogene 31, 3913–3923 (2012). https://doi.org/10.1038/onc.2011.560

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.560

Keywords

This article is cited by

Search

Quick links