Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Proyl isomerase Pin1 facilitates ubiquitin-mediated degradation of cyclin-dependent kinase 10 to induce tamoxifen resistance in breast cancer cells

Abstract

Endocrine therapies that inhibit estrogen receptor (ER)-α signaling are the most common and effective treatment for ER-α-positive breast cancer. However, the use of these agents is limited by the frequent development of resistance. The aim of this study was to elucidate the mechanisms by which downregulation of CDK10 expression confers resistance to tamoxifen in breast cancer. Here, we show that peptidyl-prolyl isomerase Pin1 downregulates CDK10 protein as a result of its interaction with and ubiquitination of CDK10, thereby affecting CDK10-dependent Raf-1 phosphorylation (S338). Pin1–/– mouse embryonic fibroblasts (MEFs) show higher CDK10 expression than Pin1+/+ MEFs, whereas CDK10 protein was downregulated in the rescued Pin1–/– MEFs after reexpression of Pin1. Pin1 silencing in SKBR-3 and MCF7 cells increased the CDK10 expression. In human tamoxifen-resistant breast cancer and tamoxifen-resistant MCF7 cells, immunohistochemical staining and immunoblotting analysis shows an inverse correlation between the expression of CDK10 and the degree of tamoxifen resistance. There was also a positive correlation between the high level of P-Raf-1 (Ser338) and Pin1 in human tamoxifen-resistant breast cancer and tamoxifen-resistant MCF7 (TAMR-MCF7) cells. Importantly, 4-OH tamoxifen (4-OHT), when used in combination with overexpressed CDK10 or Raf-1 inhibitor, increased cleaved PARP and DNA fragmentation to inhibit cologenic growth of MCF7 cells and Tamoxifen-resistant MCF7 cells, respectively. On the basis of these findings, we suggest that the Pin1-mediated CDK10 ubiquitination is a major regulator of tamoxifen-resistant breast cancer cell growth and survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Ali S, Coombes RC . (2002). Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2: 101–112.

    Article  PubMed  Google Scholar 

  • Brambilla R, Draetta G . (1994). Molecular cloning of PISSLRE, a novel putative member of the cdk family of protein serine/threonine kinases. Oncogene 9: 3037–3041.

    CAS  PubMed  Google Scholar 

  • Clarke R, Liu MC, Bouker KB, Gu Z, Lee RY, Zhu Y et al. (2003). Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling. Oncogene 22: 7316–7339.

    Article  CAS  PubMed  Google Scholar 

  • Deroo BJ, Korach KS . (2006). Estrogen receptors and human disease. J Clin Invest 116: 561–570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dougherty MK, Muller J, Ritt DA, Zhou M, Zhou XZ, Copeland TD et al. (2005). Regulation of Raf-1 by direct feedback phosphorylation. Mol Cell 17: 215–224.

    Article  CAS  PubMed  Google Scholar 

  • EBCTCG (2005). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365: 1687–1717.

    Article  Google Scholar 

  • El-Ashry D, Miller DL, Kharbanda S, Lippman ME, Kern FG . (1997). Constitutive Raf-1 kinase activity in breast cancer cells induces both estrogen-independent growth and apoptosis. Oncogene 15: 423–435.

    Article  CAS  PubMed  Google Scholar 

  • Finn G, Lu KP . (2008). Phosphorylation-specific prolyl isomerase Pin1 as a new diagnostic and therapeutic target for cancer. Curr Cancer Drug Targets 8: 223–229.

    Article  CAS  PubMed  Google Scholar 

  • Giacinti L, Claudio PP, Lopez M, Giordano A . (2006). Epigenetic information and estrogen receptor alpha expression in breast cancer. Oncologist 11: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Heller G, Ziegler B, Brandstetter A, Novak S, Rudas M, Hennig G et al. (2009). CDK10 is not a target for aberrant DNA methylation in breast cancer. Anticancer Res 29: 3939–3944.

    CAS  PubMed  Google Scholar 

  • Iorns E, Turner NC, Elliott R, Syed N, Garrone O, Gasco M et al. (2008). Identification of CDK10 as an important determinant of resistance to endocrine therapy for breast cancer. Cancer Cell 13: 91–104.

    Article  CAS  PubMed  Google Scholar 

  • Le Goff P, Montano MM, Schodin DJ, Katzenellenbogen BS . (1994). Phosphorylation of the human estrogen receptor. Identification of hormone-regulated sites and examination of their influence on transcriptional activity. J Biol Chem 269: 4458–4466.

    CAS  PubMed  Google Scholar 

  • Lee M, Koh WS, Han SS . (2003). Down-regulation of Raf-1 kinase is associated with paclitaxel resistance in human breast cancer MCF-7/Adr cells. Cancer Lett 193: 57–64.

    Article  CAS  PubMed  Google Scholar 

  • Li S, MacLachlan TK, De Luca A, Claudio PP, Condorelli G, Giordano A . (1995). The cdc-2-related kinase, PISSLRE, is essential for cell growth and acts in G2 phase of the cell cycle. Cancer Res 55: 3992–3995.

    CAS  PubMed  Google Scholar 

  • Lu KP . (2003). Prolyl isomerase Pin1 as a molecular target for cancer diagnostics and therapeutics. Cancer Cell 4: 175–180.

    Article  CAS  PubMed  Google Scholar 

  • Lu KP, Hanes SD, Hunter T . (1996). A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380: 544–547.

    Article  CAS  PubMed  Google Scholar 

  • Lu KP, Liou YC, Zhou XZ . (2002). Pinning down proline-directed phosphorylation signaling. Trends Cell Biol 12: 164–172.

    Article  CAS  PubMed  Google Scholar 

  • Massarweh S, Osborne CK, Creighton CJ, Qin L, Tsimelzon A, Huang S et al. (2008). Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res 68: 826–833.

    Article  CAS  PubMed  Google Scholar 

  • McGlynn LM, Kirkegaard T, Edwards J, Tovey S, Cameron D, Twelves C et al. (2009). Ras/Raf-1/MAPK pathway mediates response to tamoxifen but not chemotherapy in breast cancer patients. Clin Cancer Res 15: 1487–1495.

    Article  CAS  PubMed  Google Scholar 

  • Morgan DO . (1997). Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13: 261–291.

    Article  CAS  PubMed  Google Scholar 

  • Namgoong GM, Khanal P, Cho HG, Lim SC, Oh YK, Kang BS et al. (2010). The prolyl isomerase Pin1 induces LC-3 expression and mediates tamoxifen resistance in breast cancer. J Biol Chem 285: 23829–23841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norbury C, Nurse P . (1992). Animal cell cycles and their control. Annu Rev Biochem 61: 441–470.

    Article  CAS  PubMed  Google Scholar 

  • Oh AS, Lorant LA, Holloway JN, Miller DL, Kern FG, El-Ashry D . (2001). Hyperactivation of MAPK induces loss of ERalpha expression in breast cancer cells. Mol Endocrinol 15: 1344–1359.

    CAS  PubMed  Google Scholar 

  • Osborne CK, Shou J, Massarweh S, Schiff R . (2005). Crosstalk between estrogen receptor and growth factor receptor pathways as a cause for endocrine therapy resistance in breast cancer. Clin Cancer Res 11: 865s–870s.

    CAS  PubMed  Google Scholar 

  • Pietras RJ, Arboleda J, Reese DM, Wongvipat N, Pegram MD, Ramos L et al. (1995). HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene 10: 2435–2446.

    CAS  PubMed  Google Scholar 

  • Riggs BL, Hartmann LC . (2003). Selective estrogen-receptor modulators -- mechanisms of action and application to clinical practice. N Engl J Med 348: 618–629.

    Article  CAS  PubMed  Google Scholar 

  • Ryo A, Liou YC, Lu KP, Wulf G . (2003). Prolyl isomerase Pin1: a catalyst for oncogenesis and a potential therapeutic target in cancer. J Cell Sci 116: 773–783.

    Article  CAS  PubMed  Google Scholar 

  • Shang Y, Brown M . (2002). Molecular determinants for the tissue specificity of SERMs. Science 295: 2465–2468.

    Article  CAS  PubMed  Google Scholar 

  • Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H et al. (2004). Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 96: 926–935.

    Article  CAS  PubMed  Google Scholar 

  • Stanya KJ, Liu Y, Means AR, Kao HY . (2008). Cdk2 and Pin1 negatively regulate the transcriptional corepressor SMRT. J Cell Biol 183: 49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trowbridge JM, Rogatsky I, Garabedian MJ . (1997). Regulation of estrogen receptor transcriptional enhancement by the cyclin A/Cdk2 complex. Proc Natl Acad Sci USA 94: 10132–10137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valabrega G, Capellero S, Cavalloni G, Zaccarello G, Petrelli A, Migliardi G et al. (2011). HER2-positive breast cancer cells resistant to trastuzumab and lapatinib lose reliance upon HER2 and are sensitive to the multitargeted kinase inhibitor sorafenib. Breast Cancer Res Treat 130: 29–40.

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H et al. (2004). BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64: 7099–7109.

    Article  CAS  PubMed  Google Scholar 

  • Wulf G, Finn G, Suizu F, Lu KP . (2005). Phosphorylation-specific prolyl isomerization: is there an underlying theme? Nat Cell Biol 7: 435–441.

    Article  CAS  PubMed  Google Scholar 

  • Wulf GM, Ryo A, Wulf GG, Lee SW, Niu T, Petkova V et al. (2001). Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. EMBO J 20: 3459–3472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaffe MB, Schutkowski M, Shen M, Zhou XZ, Stukenberg PT, Rahfeld JU et al. (1997). Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 278: 1957–1960.

    Article  CAS  PubMed  Google Scholar 

  • Yi P, Wu RC, Sandquist J, Wong J, Tsai SY, Tsai MJ et al. (2005). Peptidyl-prolyl isomerase 1 (Pin1) serves as a coactivator of steroid receptor by regulating the activity of phosphorylated steroid receptor coactivator 3 (SRC-3/AIB1). Mol Cell Biol 25: 9687–9699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Hicklin DJ et al. (2004). Halting the interaction between vascular endothelial growth factor and its receptors attenuates liver carcinogenesis in mice. Hepatology 39: 1517–1524.

    Article  CAS  PubMed  Google Scholar 

  • Zwijsen RM, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides RJ . (1997). CDK-independent activation of estrogen receptor by cyclin D1. Cell 88: 405–415.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2009-0073468 and 2010-0009728).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H S Choi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanal, P., Yun, H., Lim, S. et al. Proyl isomerase Pin1 facilitates ubiquitin-mediated degradation of cyclin-dependent kinase 10 to induce tamoxifen resistance in breast cancer cells. Oncogene 31, 3845–3856 (2012). https://doi.org/10.1038/onc.2011.548

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.548

Keywords

This article is cited by

Search

Quick links