Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The E3 ligase COP1 promotes ERα signaling and suppresses EMT in breast cancer

Abstract

ERα signaling drives proliferation, survival and cancer initiation in the mammary gland. Therefore, it is critical to elucidate mechanisms by which ERα expression is regulated. We show that the tumor suppressor E3 ligase COP1 promotes the degradative polyubiquitination of the microtubule-associated protein HPIP. As such, COP1 negatively regulates estrogen-dependent AKT activation in breast cancer cells. However, COP1 also induces ERα expression and ERα-dependent gene transcription, at least through c-Jun degradation. COP1 and ERα levels are positively correlated in clinical cases of breast cancer. COP1 also supports the metabolic reprogramming by estrogens, including glycolysis. On the other hand, COP1 suppresses EMT in breast cancer cells. COP1 deficiency also contributes to Tamoxifen resistance, at least through protective autophagy. Therefore, COP1 acts as an oncogenic E3 ligase by promoting ERα signaling but also acts as a tumor suppressor candidate by preventing EMT, which reflects a dual role of COP1 in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: COP1 binds HPIP.
Fig. 2: COP1 negatively regulates estrogens-dependent TBK1 and AKT activation but promotes ERα expression.
Fig. 3: COP1 promotes ERα expression in breast cancer.
Fig. 4: The induction of ERα target genes by estrogens rely on COP1.
Fig. 5: c-Jun is a negative regulator of ERα expression.
Fig. 6: Metabolic reprogramming by estrogens requires COP1.
Fig. 7: COP1 expression prevents EMT.
Fig. 8: COP1 negatively regulates the pool of cancer stem cells.
Fig. 9: COP1 deficiency promotes Tamoxifen resistance.
Fig. 10: A dual role for COP1 expression in breast cancer.

Similar content being viewed by others

References

  1. Craig Allred D, Brown P, Medina D. The origins of estrogen receptor alpha-positive and estrogen receptor alpha-negative human breast cancer. Breast Cancer Res. 2004;6:240–5.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rae JM, Johnson MD, Scheys JO, Cordero KE, Larios JM, Lippman ME. GREB1 is a critical regulator of hormone dependent breast cancer growth. Breast Cancer Res Treat. 2005;92:141–9.

    Article  CAS  PubMed  Google Scholar 

  3. Ikeda K, Horie-Inoue K, Inoue S. Identification of estrogen-responsive genes based on the DNA binding properties of estrogen receptors using high-throughput sequencing technology. Acta Pharmacol Sin. 2015;36:24–31.

    Article  CAS  PubMed  Google Scholar 

  4. Welboren WJ, Van Driel MA, Janssen-Megens EM, Van Heeringen SJ, Sweep FC, Span PN, et al. ChIP-Seq of ERα and RNA polymerase II defines genes differentially responding to ligands. EMBO J. 2009;28:1418–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Welboren WJ, Sweep FCGJ, Span PN, Stunnenberg HG. Genomic actions of estrogen receptor α: What are the targets and how are they regulated? Endocr-Relat Cancer. 2009;16:1073–89.

    Article  CAS  PubMed  Google Scholar 

  6. Folkerd EJ, Dowsett M. Influence of sex hormones on cancer progression. J Clin Oncol. 2010;28:4038–44.

    Article  CAS  PubMed  Google Scholar 

  7. Koš M, Reid G, Denger S, Gannon F. Minireview: genomic organization of the human ERα gene promoter region. Mol Endocrinol. 2001;15:2057–63.

    PubMed  Google Scholar 

  8. Yoshida T, Eguchi H, Nakachi K, Tanimoto K, Higashi Y, Suemasu K, et al. Distinct mechanisms of loss of estrogen receptor α gene expression in human breast cancer: Methylation of the gene and alteration of trans-acting factors. Carcinogenesis. 2000;21:2193–201.

    Article  CAS  PubMed  Google Scholar 

  9. Turner BC, Zhang J, Gumbs AA, Maher MG, Kaplan L, Carter D, et al. Expression of AP-2 transcription factors in human breast cancer correlates with the regulation of multiple growth factor signalling pathways. Cancer Res. 1998;58:5466–72.

    CAS  PubMed  Google Scholar 

  10. Grabinski N, Möllmann K, Milde-Langosch K, Müller V, Schumacher U, Brandt B, et al. AKT3 regulates ErbB2, ErbB3 and estrogen receptor α expression and contributes to endocrine therapy resistance of ErbB2+ breast tumor cells from Balb-neuT mice. Cell Signal. 2014;26:1021–9.

    Article  CAS  PubMed  Google Scholar 

  11. Madureira PA, Varshochi R, Constantinidou D, Francis RE, Coombes RC, Yao KM, et al. The forkhead box M1 protein regulates the transcription of the estrogen receptor α in breast cancer cells. J Biol Chem. 2006;281:25167–76.

    Article  CAS  PubMed  Google Scholar 

  12. Eeckhoute J, Keeton EK, Lupien M, Krum SA, Carroll JS, Brown M. Positive cross-regulatory loop ties GATA-3 to estrogen receptor α expression in breast cancer. Cancer Res. 2007;67:6477–83.

    Article  CAS  PubMed  Google Scholar 

  13. Doucas V, Spyrou G, Yaniv M. Unregulated expression of c-Jun or c-Fos proteins but not Jun D inhibits oestrogen receptor activity in human breast cancer derived cells. EMBO J. 1991;10:2237–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith LM, Wise SC, Hendricks DT, Sabichi AL, Bos T, Reddy P, et al. cJun overexpression in MCF-7 breast cancer cells produces a tumorigenic, invasive and hormone resistant phenotype. Oncogene. 1999;18:6063–70.

    Article  CAS  PubMed  Google Scholar 

  15. Tecalco-Cruz AC, Ramírez-Jarquín JO. Mechanisms that increase stability of estrogen receptor alpha in breast cancer. Clin Breast Cancer. 2017;17:1–10.

    Article  CAS  PubMed  Google Scholar 

  16. Manavathi B, Acconcia F, Rayala SK, Kumar R. An inherent role of microtubule network in the action of nuclear receptor. Proc Natl Acad Sci USA. 2006;103:15981–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shostak K, Patrascu F, Göktuna SI, Close P, Borgs L, Nguyen L, et al. MDM2 restrains estrogen-mediated AKT activation by promoting TBK1-dependent HPIP degradation. Cell Death Differ. 2014;21:811–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marine JC. Spotlight on the role of COP1 in tumorigenesis. Nat Rev Cancer. 2012;12:455–64.

    Article  CAS  PubMed  Google Scholar 

  19. Migliorini D, Bogaerts S, Defever D, Vyas R, Denecker G, Radaelli E, et al. Cop1 constitutively regulates c-Jun protein stability and functions as a tumor suppressor in mice. J Clin Investig. 2011;121:1329–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vitari AC, Leong KG, Newton K, Yee C, Oĝrourke K, Liu J, et al. COP1 is a tumour suppressor that causes degradation of ETS transcription factors. Nature. 2011;474:403–8.

    Article  CAS  PubMed  Google Scholar 

  21. Baert JL, Monte D, Verreman K, Degerny C, Coutte L, De Launoit Y. The E3 ubiquitin ligase complex component COP1 regulates PEA3 group member stability and transcriptional activity. Oncogene. 2010;29:1810–20.

    Article  CAS  PubMed  Google Scholar 

  22. Wertz IE, O’Rourke KM, Zhang Z, Dornan D, Arnott D, Deshaies RJ, et al. Human De-etiolated-regulates c-Jun by assembling a CUL4A ubiquitin ligase. Science. 2004;303:1371–4.

    Article  CAS  PubMed  Google Scholar 

  23. Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P, et al. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature. 2004;429:86–92.

    Article  CAS  PubMed  Google Scholar 

  24. Lorent J, Kusnadi EP, Hoef V, Rebello RJ, Leibovitch M, Ristau J, et al. Translational offsetting as a mode of estrogen receptor α‐dependent regulation of gene expression. EMBO J. 2019;38. https://doi.org/10.15252/embj.2018101323.

  25. Neeman M, Degani H. Metabolic studies of estrogen-and tamoxifen-treated human breast cancer cells by nuclear magnetic resonance spectroscopy. Cancer Res. 1989;49:589–94.

    CAS  PubMed  Google Scholar 

  26. Neeman M, Degani H. Early estrogen-induced metabolic changes and their inhibition by actinomycin D and cycloheximide in human breast cancer cells: 31P and 13C NMR studies. Proc Natl Acad Sci USA. 1989;86:5585–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. O’Mahony F, Razandi M, Pedram A, Harvey BJ, Levin ER. Estrogen modulates metabolic pathway adaptation to available glucose in breast cancer cells. Mol Endocrinol. 2012;26:2058–70.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jia M, Andreassen T, Jensen L, Bathen TF, Sinha I, Gao H, et al. Estrogen receptor a promotes breast cancer by reprogramming choline metabolism. Cancer Res. 2016;76:5634–46.

    Article  CAS  PubMed  Google Scholar 

  29. van Gastel N, Stegen S, Eelen G, Schoors S, Carlier A, Daniëls VW, et al. Lipid availability determines fate of skeletal progenitor cells via SOX9. Nature. 2020;579:111–7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shostak K, Zhang X, Hubert P, Göktuna SI, Jiang Z, Klevernic I, et al. NF-κB-induced KIAA1199 promotes survival through EGFR signalling. Nat Commun. 2014;5. https://doi.org/10.1038/ncomms6232.

  31. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates. Cells Prop Stem Cells Cell. 2008;133:704–15.

    CAS  Google Scholar 

  32. Luque-Bolivar A, Pérez-Mora E, Eugenia Villegas V, Rondon-Lagos M. Resistance and overcoming resistance in breast cancer. Breast Cancer. 2020;12:211–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Cook KL, Shajahan AN, Wärri A, Jin L, Hilakivi-Clarke LA, Clarke R. Glucose-regulated protein 78 controls cross-talk between apoptosis and autophagy to determine antiestrogen responsiveness. Cancer Res. 2012;72:3337–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Samaddar JS, Gaddy VT, Duplantier J, Thandavan SP, Shah M, Smith MJ, et al. A role for macroautophagy in protection against 4-hydroxytamoxifen-induced cell death and the development of antiestrogen resistance. Mol Cancer Ther. 2008;7:2977–87.

    Article  CAS  PubMed  Google Scholar 

  35. Meley D, Bauvy C, Houben-Weerts JHPM, Dubbelhuis PF, Helmond MTJ, Codogno P, et al. AMP-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem. 2006;281:34870–9.

    Article  CAS  PubMed  Google Scholar 

  36. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chan EYW, Kir S, Tooze SA. siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J Biol Chem. 2007;282:25464–74.

    Article  CAS  PubMed  Google Scholar 

  38. Zou S, Zhu Y, Wang B, Qian F, Zhang X, Wang L, et al. The ubiquitin ligase COP1 promotes glioma cell proliferation by preferentially downregulating tumor suppressor p53. Mol Neurobiol. 2017;54:5008–16.

    Article  CAS  PubMed  Google Scholar 

  39. Wang SC, Chai DSen, Chen CB, Wang ZY, Wang L. HPIP promotes thyroid cancer cell growth, migration and EMT through activating PI3K/AKT signaling pathway. Biomed Pharmacother. 2015;75:33–39.

    Article  CAS  PubMed  Google Scholar 

  40. Ouyang M, Wang H, Ma J, Lü W, Li J, Yao C, et al. COP1, the negative regulator of ETV1, influences prognosis in triple-negative breast cancer. BMC Cancer. 2015;15. https://doi.org/10.1186/s12885-015-1151-y.

  41. Lundberg AS, Weinberg RA. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol Cell Biol. 1998;18:753–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vega S, Morales AV, Ocaña OH, Valdés F, Fabregat I, Nieto MA. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev. 2004;18:1131–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S, et al. Use of cells expressing γ subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. 2010;11:554–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shostak K, Jiang Z, Charloteaux B, Mayer A, Habraken Y, Tharun L, et al. The X-linked trichothiodystrophy-causing gene RNF113A links the spliceosome to cell survival upon DNA damage. Nat Commun. 2020;11. https://doi.org/10.1038/s41467-020-15003-7.

  45. Gatot JS, Gioia R, Chau TL, Patrascu F, Warnier M, Close P, et al. Lipopolysaccharide-mediated interferon regulatory factor activation involves TBK1-IKKε-dependent lys63-linked polyubiquitination and phosphorylation of TANK/I-TRAF. J Biol Chem. 2007;282:31131–46.

    Article  CAS  PubMed  Google Scholar 

  46. Hendriks MMWB, Smit S, Akkermans WLMW, Reijmers TH, Eilers PHC, Hoefsloot HCJ, et al. How to distinguish healthy from diseased? Classification strategy for mass spectrometry-based clinical proteomics. Proteomics. 2007;7:3672–80.

    Article  CAS  PubMed  Google Scholar 

  47. Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Res. 2015;43:W251–W257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rademaker G, Hennequière V, Brohée L, Nokin MJ, Lovinfosse P, Durieux F, et al. Myoferlin controls mitochondrial structure and activity in pancreatic ductal adenocarcinoma, and affects tumor aggressiveness. Oncogene. 2018;37:4398–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, et al. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020;38:276–8.

    Article  CAS  PubMed  Google Scholar 

  50. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15. https://doi.org/10.1186/s13059-014-0550-8.

Download references

Acknowledgements

The authors thank Arnaud Blomme (Laboratory of Cancer Signaling, University of Liege, Liege, Belgium) for the gift of PyMT cells. The authors also thank the GIGA Imaging and Flow Cytometry Facility as well as the GIGA Genomics Platform for RNA-Sequencing analyses. This study was supported by Grants from the Belgian National Funds for Scientific Research (FNRS) and from Special Research Funds (FSR) at the University of Liege, the Belgian foundation against Cancer (FAF-F/2016/794), as well as from the Walloon Excellence in Life Sciences and Biotechnology (WELBIO-CR-2015A-02). We are also grateful to the “Fondation Leon Fredericq” of the CHU Liege for its financial support. A. Chariot and P. Close are Research Director and Senior Research Associate at the FNRS, respectively. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, AC and KS; Methodology, SCT, QL, OP, PCh, AL, A M, PAF, PCl, SK, AF and IN; Investigation, SCT, QL, PCh, AL, AM, PAF, PCl, SK, AF and IN; Formal Analysis: SCT, OP, KS and AC; Writing—Original Draft, AC; Funding Acquisition, AC; Resources, RB; Supervision, AC.

Corresponding author

Correspondence to Alain Chariot.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S.C., Lion, Q., Peulen, O. et al. The E3 ligase COP1 promotes ERα signaling and suppresses EMT in breast cancer. Oncogene 41, 173–190 (2022). https://doi.org/10.1038/s41388-021-02038-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02038-3

This article is cited by

Search

Quick links