Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Defining MAP3 kinases required for MDA-MB-231 cell tumor growth and metastasis

Abstract

Analysis of patient tumors suggests that multiple MAP3 kinases (MAP3Ks) are critical for growth and metastasis of cancer cells. MAP3Ks selectively control the activation of extracellular signal-regulated kinase 1/2 (ERK1/2), Jun N-terminal kinase (JNK), p38 and ERK5 in response to receptor tyrosine kinases and GTPases. We used MDA-MB-231 cells because of their ability to metastasize from the breast fat pad to distant lymph nodes for an orthotopic xenograft model to screen the function of seven MAP3Ks in controlling tumor growth and metastasis. Stable short hairpin RNA (shRNA) knockdown was used to inhibit the expression of each of the seven MAP3Ks, which were selected for their differential regulation of the MAPK network. The screen identified two MAP3Ks, MEKK2 and MLK3, whose shRNA knockdown caused significant inhibition of both tumor growth and metastasis. Neither MEKK2 nor MLK3 have been previously shown to regulate tumor growth and metastasis in vivo. These results demonstrated that MAP3Ks, which differentially activate JNK, p38 and ERK5, are necessary for xenograft tumor growth and metastasis of MDA-MB-231 tumors. The requirement for MAP3Ks signaling through multiple MAPK pathways explains why several members of the MAPK network are activated in cancer. MEKK2 was required for epidermal growth factor receptor and Her2/Neu activation of ERK5, with ERK5 being required for metastasis. Loss of MLK3 expression increased mitotic infidelity and apoptosis in vitro. Knockdown of MEKK2 and MLK3 resulted in increased apoptosis in orthotopic xenografts relative to control tumors in mice, inhibiting both tumor growth and metastasis; MEKK2 and MLK3 represent untargeted kinases in tumor biology for potential therapeutic development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A et al. (2008). Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10: 619–624.

    Article  CAS  Google Scholar 

  • Brancho D, Ventura JJ, Jaeschke A, Doran B, Flavell RA, Davis RJ . (2005). Role of MLK3 in the regulation of mitogen-activated protein kinase signaling cascades. Mol Cell Biol 25: 3670–3681.

    Article  CAS  Google Scholar 

  • Cazares LH, Troyer D, Mendrinos S, Lance RA, Nyalwidhe JO, Beydoun HA et al. (2009). Imaging mass spectrometry of a specific fragment of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 2 discriminates cancer from uninvolved prostate tissue. Clin Cancer Res 15: 5541–5551.

    Article  CAS  Google Scholar 

  • Cha H, Dangi S, Machamer CE, Shapiro P . (2006). Inhibition of mixed-lineage kinase (MLK) activity during G2-phase disrupts microtubule formation and mitotic progression in HeLa cells. Cell Signal 18: 93–104.

    Article  CAS  Google Scholar 

  • Chandana SR, Leece CM, Gallo KA, Madhukar BV, Conley BA . (2010). Inhibition of MLK3 decreases proliferation and increases antiproliferative activity of epidermal growth factor receptor (EGFR) inhibitor in pancreatic cancer cell lines. Cancer Growth Metast 2010: 1.

    Google Scholar 

  • Chen J, Miller EM, Gallo KA . (2010). MLK3 is critical for breast cancer cell migration and promotes a malignant phenotype in mammary epithelial cells. Oncogene 29: 4399–4411.

    Article  CAS  Google Scholar 

  • Cuevas BD, Abell AN, Johnson GL . (2007). Role of mitogen-activated protein kinase kinase kinases in signal integration. Oncogene 26: 3159–3171.

    Article  CAS  Google Scholar 

  • Cuevas BD, Winter-Vann AM, Johnson NL, Johnson GL . (2006). MEKK1 controls matrix degradation and tumor cell dissemination during metastasis of polyoma middle-T driven mammary cancer. Oncogene 25: 4998–5010.

    Article  CAS  Google Scholar 

  • Davidson B, Konstantinovsky S, Kleinberg L, Nguyen MT, Bassarova A, Kvalheim G et al. (2006). The mitogen-activated protein kinases (MAPK) p38 and JNK are markers of tumor progression in breast carcinoma. Gynecol Oncol 102: 453–461.

    Article  CAS  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. (2002). Mutations of the BRAF gene in human cancer. Nature 417: 949–954.

    Article  CAS  Google Scholar 

  • Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW et al. (2010). Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464: 999–1005.

    Article  CAS  Google Scholar 

  • Fedorov O, Muller S, Knapp S . (2010). The (un)targeted cancer kinome. Nat Chem Biol 6: 166–169.

    Article  CAS  Google Scholar 

  • Fodde R, Kuipers J, Rosenberg C, Smits R, Kielman M, Gaspar C et al. (2001). Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol 3: 433–438.

    Article  CAS  Google Scholar 

  • Guo Z, Clydesdale G, Cheng J, Kim K, Gan L, McConkey DJ et al. (2002). Disruption of Mekk2 in mice reveals an unexpected role for MEKK2 in modulating T-cell receptor signal transduction. Mol Cell Biol 22: 5761–5768.

    Article  CAS  Google Scholar 

  • Hui L, Zatloukal K, Scheuch H, Stepniak E, Wagner EF . (2008). Proliferation of human HCC cells and chemically induced mouse liver cancers requires JNK1-dependent p21 downregulation. J Clin Invest 118: 3943–3953.

    Article  CAS  Google Scholar 

  • Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E et al. (2008). Systemic spread is an early step in breast cancer. Cancer Cell 13: 58–68.

    Article  Google Scholar 

  • Jaeschke A, Davis RJ . (2007). Metabolic stress signaling mediated by mixed-lineage kinases. Mol Cell 27: 498–508.

    Article  CAS  Google Scholar 

  • Kasthuri RS, Taubman MB, Mackman N . (2009). Role of tissue factor in cancer. J Clin Oncol 27: 4834–4838.

    Article  CAS  Google Scholar 

  • Kesavan K, Lobel-Rice K, Sun W, Lapadat R, Webb S, Johnson GL et al. (2004). MEKK2 regulates the coordinate activation of ERK5 and JNK in response to FGF-2 in fibroblasts. J Cell Physiol 199: 140–148.

    Article  CAS  Google Scholar 

  • Khorana AA, Francis CW, Menzies KE, Wang JG, Hyrien O, Hathcock J et al. (2008). Plasma tissue factor may be predictive of venous thromboembolism in pancreatic cancer. J Thromb Haemost 6: 1983–1985.

    Article  CAS  Google Scholar 

  • Kim KY, Kim BC, Xu Z, Kim SJ . (2004). Mixed lineage kinase 3 (MLK3)-activated p38 MAP kinase mediates transforming growth factor-beta-induced apoptosis in hepatoma cells. J Biol Chem 279: 29478–29484.

    Article  CAS  Google Scholar 

  • Lee W, Jiang Z, Liu J, Haverty PM, Guan Y, Stinson J et al. (2010). The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature 465: 473–477.

    Article  CAS  Google Scholar 

  • McCracken SR, Ramsay A, Heer R, Mathers ME, Jenkins BL, Edwards J et al. (2008). Aberrant expression of extracellular signal-regulated kinase 5 in human prostate cancer. Oncogene 27: 2978–2988.

    Article  CAS  Google Scholar 

  • Mehta PB, Jenkins BL, McCarthy L, Thilak L, Robson CN, Neal DE et al. (2003). MEK5 overexpression is associated with metastatic prostate cancer, and stimulates proliferation, MMP-9 expression and invasion. Oncogene 22: 1381–1389.

    Article  CAS  Google Scholar 

  • Mishra R, Barthwal MK, Sondarva G, Rana B, Wong L, Chatterjee M et al. (2007). Glycogen synthase kinase-3beta induces neuronal cell death via direct phosphorylation of mixed lineage kinase 3. J Biol Chem 282: 30393–30405.

    Article  CAS  Google Scholar 

  • Montero JC, Ocana A, Abad M, Ortiz-Ruiz MJ, Pandiella A, Esparis-Ogando A . (2009). Expression of Erk5 in early stage breast cancer and association with disease free survival identifies this kinase as a potential therapeutic target. PLoS One 4: e5565.

    Article  Google Scholar 

  • Nakamura K, Kimple AJ, Siderovski DP, Johnson GL . (2010). PB1 domain interaction of p62/sequestosome 1 and MEKK3 regulates NF-kappaB activation. J Biol Chem 285: 2077–2089.

    Article  CAS  Google Scholar 

  • Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI et al. (2010). Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12: R68.

    Article  Google Scholar 

  • Rak J . (2010). Microparticles in cancer. Semin Thromb Hemost 36: 888–906.

    Article  CAS  Google Scholar 

  • Samowitz WS, Sweeney C, Herrick J, Albertsen H, Levin TR, Murtaugh MA et al. (2005). Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res 65: 6063–6069.

    Article  CAS  Google Scholar 

  • Sartorius CA, Shen T, Horwitz KB . (2003). Progesterone receptors A and B differentially affect the growth of estrogen-dependent human breast tumor xenografts. Breast Cancer Res Treat 79: 287–299.

    Article  CAS  Google Scholar 

  • Sheridan C, Brumatti G, Martin SJ . (2008). Oncogenic B-RafV600E inhibits apoptosis and promotes ERK-dependent inactivation of Bad and Bim. J Biol Chem 283: 22128–22135.

    Article  CAS  Google Scholar 

  • Sidebottom E, Clark SR . (1983). Cell fusion segregates progressive growth from metastasis. Br J Cancer 47: 399–406.

    Article  CAS  Google Scholar 

  • Sourvinos G, Tsatsanis C, Spandidos DA . (1999). Overexpression of the Tpl-2/Cot oncogene in human breast cancer. Oncogene 18: 4968–4973.

    Article  CAS  Google Scholar 

  • Sticht C, Freier K, Knopfle K, Flechtenmacher C, Pungs S, Hofele C et al. (2008). Activation of MAP kinase signaling through ERK5 but not ERK1 expression is associated with lymph node metastases in oral squamous cell carcinoma (OSCC). Neoplasia 10: 462–470.

    Article  CAS  Google Scholar 

  • Sun W, Wei X, Kesavan K, Garrington TP, Fan R, Mei J et al. (2003). MEK kinase 2 and the adaptor protein Lad regulate extracellular signal-regulated kinase 5 activation by epidermal growth factor via Src. Mol Cell Biol 23: 2298–2308.

    Article  CAS  Google Scholar 

  • Tatake RJ, O'Neill MM, Kennedy CA, Wayne AL, Jakes S, Wu D et al. (2008). Identification of pharmacological inhibitors of the MEK5/ERK5 pathway. Biochem Biophys Res Commun 377: 120–125.

    Article  CAS  Google Scholar 

  • Wagner EF, Nebreda AR . (2009). Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9: 537–549.

    Article  CAS  Google Scholar 

  • Waldmeier P, Bozyczko-Coyne D, Williams M, Vaught JL . (2006). Recent clinical failures in Parkinson's disease with apoptosis inhibitors underline the need for a paradigm shift in drug discovery for neurodegenerative diseases. Biochem Pharmacol 72: 1197–1206.

    Article  CAS  Google Scholar 

  • Wang X, Chao L, Li X, Ma G, Chen L, Zang Y et al. (2010). Elevated expression of phosphorylated c-Jun NH2-terminal kinase in basal-like and ‘triple-negative’ breast cancers. Hum Pathol 41: 401–406.

    Article  CAS  Google Scholar 

  • Wo JY, Chen K, Neville BA, Lin NU, Punglia RS . (2011). Effect of very small tumor size on cancer-specific mortality in node-positive breast cancer. J Clin Oncoly 29: 2619–2627.

    Article  Google Scholar 

  • Yang Q, Deng X, Lu B, Cameron M, Fearns C, Patricelli MP et al. (2010). Pharmacological inhibition of BMK1 suppresses tumor growth through promyelocytic leukemia protein. Cancer Cell 18: 258–267.

    Article  CAS  Google Scholar 

  • Yu JL, May L, Lhotak V, Shahrzad S, Shirasawa S, Weitz JI et al. (2005). Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood 105: 1734–1741.

    Article  CAS  Google Scholar 

  • Zen K, Yasui K, Nakajima T, Zen Y, Gen Y, Mitsuyoshi H et al. (2009). ERK5 is a target for gene amplification at 17p11 and promotes cell growth in hepatocellular carcinoma by regulating mitotic entry. Genes Chromosomes Cancer 48: 109–120.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grants GM30324 (GLJ), DK37871 (GLJ), GM059167 (HGD), U54CA156735 (GLJ and JES) and CA120881 (BC) and the University of North Carolina Cancer Research Fund (GLJ). We acknowledge the RNAi Screening Core and Lentiviral shRNA Core for support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G L Johnson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cronan, M., Nakamura, K., Johnson, N. et al. Defining MAP3 kinases required for MDA-MB-231 cell tumor growth and metastasis. Oncogene 31, 3889–3900 (2012). https://doi.org/10.1038/onc.2011.544

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.544

Keywords

This article is cited by

Search

Quick links