Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Antineoplastic activity of ouabain and pyrithione zinc in acute myeloid leukemia

Abstract

Despite recent progress in the treatment of acute myeloid leukemia (AML), the prognosis of this rather heterogeneous disease remains poor and novel chemotherapeutics that specifically target leukemic cells must be developed. To address this need at the preclinical level, we implemented a high content imaging-based screen for the identification of small agents that induce AML cell death in vitro. Among a panel of 1040 Food and Drug Administration-approved agents, we identified pyrithione zinc (PZ) and ouabain (OUA) as potential antileukemic compounds. Both PZ and OUA efficiently induced cell death associated with apoptotic chromatin condensation and inhibition of nuclear factor-κB survival signaling, leading to reduced expression of antiapoptotic proteins, in several AML cell lines. PZ- and OUA-induced cell death was associated with the permeabilization of the outer mitochondrial membrane and led to the release of cytochrome c followed by caspase activation. Both PZ and OUA exerted significant anticancer effects in vivo, on human AML cells xenografts as well as ex vivo, on CD34+ (but not CD34) malignant myeloblasts from AML patients. Altogether, our results suggest that PZ and OUA may exhibit antileukemic effects by inducing the apoptotic demise of AML cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bielawski K, Winnicka K, Bielawska A . (2006). Inhibition of DNA topoisomerases I and II, and growth inhibition of breast cancer MCF-7 cells by ouabain, digoxin and proscillaridin A. Biol Pharm Bull 29: 1493–1497.

    Article  CAS  Google Scholar 

  • Boehrer S, Ades L, Braun T, Galluzzi L, Grosjean J, Fabre C et al. (2008). Erlotinib exhibits antineoplastic off-target effects in AML and MDS: a preclinical study. Blood 111: 2170–2180.

    Article  CAS  Google Scholar 

  • Burnett A, Wetzler M, Lowenberg B . (2011). Therapeutic advances in acute myeloid leukemia. J Clin Oncol 29: 487–494.

    Article  Google Scholar 

  • Castedo M, Ferri K, Roumier T, Metivier D, Zamzami N, Kroemer G . (2002). Quantitation of mitochondrial alterations associated with apoptosis. J Immunol Methods 265: 39–47.

    Article  CAS  Google Scholar 

  • Chan G, Pilichowska M . (2007). Complete remission in a patient with acute myelogenous leukemia treated with erlotinib for non small-cell lung cancer. Blood 110: 1079–1080.

    Article  CAS  Google Scholar 

  • de La Motte Rouge T, Galluzzi L, Olaussen KA, Zermati Y, Tasdemir E, Robert T et al. (2007). A novel epidermal growth factor receptor inhibitor promotes apoptosis in non-small cell lung cancer cells resistant to erlotinib. Cancer Res 67: 6253–6262.

    Article  CAS  Google Scholar 

  • Edwards BS, Young SM, Ivnitsky-Steele I, Ye RD, Prossnitz ER, Sklar LA . (2009). High-content screening: flow cytometry analysis. Methods Mol Biol 486: 151–165.

    Article  CAS  Google Scholar 

  • Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH et al. (2009). Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ 16: 1093–1107.

    Article  CAS  Google Scholar 

  • Galluzzi L, Zamzami N, de La Motte Rouge T, Lemaire C, Brenner C, Kroemer G . (2007). Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis 12: 803–813.

    Article  CAS  Google Scholar 

  • Hahn CK, Berchuck JE, Ross KN, Kakoza RM, Clauser K, Schinzel AC et al. (2009). Proteomic and genetic approaches identify Syk as an AML target. Cancer Cell 16: 281–294.

    Article  CAS  Google Scholar 

  • Hallbook H, Felth J, Eriksson A, Fryknas M, Bohlin L, Larsson R et al. (2011). Ex vivo activity of cardiac glycosides in acute leukaemia. PLoS One 6: e15718.

    Article  Google Scholar 

  • Hoffmann J, Vitale I, Buchmann B, Galluzzi L, Schwede W, Senovilla L et al. (2008). Improved cellular pharmacokinetics and pharmacodynamics underlie the wide anticancer activity of sagopilone. Cancer Res 68: 5301–5308.

    Article  CAS  Google Scholar 

  • Juncker T, Cerella C, Teiten MH, Morceau F, Schumacher M, Ghelfi J et al. (2011). UNBS1450, a steroid cardiac glycoside inducing apoptotic cell death in human leukemia cells. Biochem Pharmacol 81: 13–23.

    Article  CAS  Google Scholar 

  • Kepp O, Galluzzi L, Lipinski M, Yuan J, Kroemer G . (2011). Cell death assays for drug discovery. Nat Rev Drug Discov 10: 221–237.

    Article  CAS  Google Scholar 

  • Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS et al. (2008). Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4: 151–175.

    Article  CAS  Google Scholar 

  • Kometiani P, Liu L, Askari A . (2005). Digitalis-induced signaling by Na+/K+-ATPase in human breast cancer cells. Mol Pharmacol 67: 929–936.

    Article  CAS  Google Scholar 

  • Lamore SD, Cabello CM, Wondrak GT . (2009). The topical antimicrobial zinc pyrithione is a heat shock response inducer that causes DNA damage and PARP-dependent energy crisis in human skin cells. Cell Stress Chaperones 15: 309–322.

    Article  Google Scholar 

  • Lamore SD, Wondrak GT . (2011). Zinc pyrithione impairs zinc homeostasis and upregulates stress response gene expression in reconstructed human epidermis. Biometals 24: 875–890.

    Article  CAS  Google Scholar 

  • Lopez-Lazaro M . (2007). Digitoxin as an anticancer agent with selectivity for cancer cells: possible mechanisms involved. Expert Opin Ther Targets 11: 1043–1053.

    Article  CAS  Google Scholar 

  • Metivier D, Dallaporta B, Zamzami N, Larochette N, Susin SA, Marzo I et al. (1998). Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-1-triggered apoptosis of Jurkat T lymphoma cells. Comparison of seven mitochondrion-specific fluorochromes. Immunol Lett 61: 157–163.

    Article  CAS  Google Scholar 

  • Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D et al. (1991). Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst 83: 757–766.

    Article  CAS  Google Scholar 

  • Newman RA, Yang P, Hittelman WN, Lu T, Ho DH, Ni D et al. (2006). Oleandrin-mediated oxidative stress in human melanoma cells. J Exp Ther Oncol 5: 167–181.

    CAS  PubMed  Google Scholar 

  • Newman RA, Yang P, Pawlus AD, Block KI . (2008). Cardiac glycosides as novel cancer therapeutic agents. Mol Interv 8: 36–49.

    Article  CAS  Google Scholar 

  • Perne A, Muellner MK, Steinrueck M, Craig-Mueller N, Mayerhofer J, Schwarzinger I et al. (2009). Cardiac glycosides induce cell death in human cells by inhibiting general protein synthesis. PLoS One 4: e8292.

    Article  Google Scholar 

  • Smits EL, Lee C, Hardwick N, Brooks S, Van Tendeloo VF, Orchard K et al. (2011). Clinical evaluation of cellular immunotherapy in acute myeloid leukaemia. Cancer Immunol Immunother 60: 757–769.

    Article  Google Scholar 

  • Stegmaier K, Corsello SM, Ross KN, Wong JS, Deangelo DJ, Golub TR . (2005). Gefitinib induces myeloid differentiation of acute myeloid leukemia. Blood 106: 2841–2848.

    Article  CAS  Google Scholar 

  • Tufi R, Panaretakis T, Bianchi K, Criollo A, Fazi B, Di Sano F et al. (2008). Reduction of endoplasmic reticulum Ca2+ levels favors plasma membrane surface exposure of calreticulin. Cell Death Differ 15: 274–282.

    Article  CAS  Google Scholar 

  • Vicencio JM, Ortiz C, Criollo A, Jones AW, Kepp O, Galluzzi L et al. (2009). The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death Differ 16: 1006–1017.

    Article  CAS  Google Scholar 

  • Vitale I, Galluzzi L, Vivet S, Nanty L, Dessen P, Senovilla L et al. (2007). Inhibition of Chk1 kills tetraploid tumor cells through a p53-dependent pathway. PLoS One 2: e1337.

    Article  Google Scholar 

  • Wald DN, Vermaat HM, Zang S, Lavik A, Kang Z, Peleg G et al. (2008). Identification of 6-benzylthioinosine as a myeloid leukemia differentiation-inducing compound. Cancer Res 68: 4369–4376.

    Article  CAS  Google Scholar 

  • Wang Z, Zheng M, Li Z, Li R, Jia L, Xiong X et al. (2009). Cardiac glycosides inhibit p53 synthesis by a mechanism relieved by Src or MAPK inhibition. Cancer Res 69: 6556–6564.

    Article  CAS  Google Scholar 

  • Weil M, Jacobson MD, Coles HS, Davies TJ, Gardner RL, Raff KD et al. (1996). Constitutive expression of the machinery for programmed cell death. J Cell Biol 133: 1053–1059.

    Article  CAS  Google Scholar 

  • Yin W, Li X, Feng S, Cheng W, Tang B, Shi YL et al. (2009). Plasma membrane depolarization and Na,K-ATPase impairment induced by mitochondrial toxins augment leukemia cell apoptosis via a novel mitochondrial amplification mechanism. Biochem Pharmacol 78: 191–202.

    Article  CAS  Google Scholar 

  • Zhang L, Nakaya K, Yoshida T, Kuroiwa Y . (1992). Induction by bufalin of differentiation of human leukemia cells HL60, U937, and ML1 toward macrophage/monocyte-like cells and its potent synergistic effect on the differentiation of human leukemia cells in combination with other inducers. Cancer Res 52: 4634–4641.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by grants to GK from the Ligue Nationale contre le Cancer (Equipes labellisée), Agence Nationale pour la Recherche (ANR), European Commission (Active p53, Apo-Sys, ChemoRes, ApopTrain), Fondation pour la Recherche Médicale (FRM), Institut National du Cancer (INCa), Cancéropôle Ile-de-France, Fondation Bettencourt-Schueller and the LabEx Onco-Immunology; to VB from Agence Nationale pour la Recherche, Association pour la Recherche sur le Cancer, Belgian InterUniversity Attraction Pole and Université Paris Descartes. MT is supported by the Ligue Nationale contre le Cancer. LG is funded by Apo-Sys; KB is supported by Agence Nationale pour la Recherche.

Author contributions: MT, LS, EL, ST, DM, MS, VB, KB and OK performed the experiments; MT, LS LG and OK analyzed results and made the figures; PF, SB, LG, OK and GK designed the research and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G Kroemer or O Kepp.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tailler, M., Senovilla, L., Lainey, E. et al. Antineoplastic activity of ouabain and pyrithione zinc in acute myeloid leukemia. Oncogene 31, 3536–3546 (2012). https://doi.org/10.1038/onc.2011.521

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.521

Keywords

This article is cited by

Search

Quick links