Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Loss of the candidate tumor suppressor BTG3 triggers acute cellular senescence via the ERK–JMJD3–p16INK4a signaling axis

Abstract

The B-cell translocation gene 3 (BTG3) is a member of the antiproliferative BTG gene family and a downstream target of p53. BTG3 also binds and inhibits E2F1. Although it connects functionally two major growth-regulatory pathways, the physiological role of BTG3 remains largely uncharacterized. Here, we present evidence that loss of BTG3 in normal cells induced cellular senescence, which was correlated with enhanced ERK–AP1 signaling and elevated expression of the histone H3K27me3 demethylase JMJD3/KDM6B, leading to acute induction of p16INK4a. Importantly, we also found that BTG3 expression is specifically downregulated in prostate cancer, thus providing a physiological link with human cancers. Our data suggest that BTG3 may have a fail-safe role against tumorigenic progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Agger K, Cloos PAC, Rdkjaer L, Williams K, Andersen G, Christensen J et al. (2009). The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev 23: 1171–1176.

    Article  CAS  Google Scholar 

  • Barradas M, Anderton E, Acosta JC, Li S, Banito A, Rodriguez-Niedenführ M et al. (2009). Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes Dev 23: 1177–1182.

    Article  CAS  Google Scholar 

  • Bartkova J, Hořejši Z, Koed K, Krämer A, Tort F, Zieger K et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870.

    Article  CAS  Google Scholar 

  • Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. (2006). Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444: 633–637.

    Article  CAS  Google Scholar 

  • Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C et al. (2007). The Polycomb group proteins bind throughout the INK4A–ARF locus and are disassociated in senescent cells. Genes Dev 21: 525–530.

    Article  CAS  Google Scholar 

  • Chen Z, Trotman LC, Shaffer D, Lin H-K, Dotan ZA, Niki M et al. (2005). Crucial role of p53-dependent cellular senescence in supression of Pten-deficient tumorigenesis. Nature 436: 725–730.

    Article  CAS  Google Scholar 

  • Collado M, Serrano M . (2010). Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10: 51–57.

    Article  CAS  Google Scholar 

  • Coppé J-P, Desprez P-Y, Krtolica A, Campisi J . (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol Mech Dis 5: 99–118.

    Article  Google Scholar 

  • Coppé J-P, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J et al. (2008). Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6: 2853–2868.

    Article  Google Scholar 

  • Courtois-Cox S, Williams SMG, Reczek RE, Johnson BW, McGillicuddy LT, Johannessen CM et al. (2006). A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10: 459–472.

    Article  CAS  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. (2006). Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444: 638–642.

    Article  CAS  Google Scholar 

  • Guardavaccaro K, Corrente G, Covone F, Micheli L, Dagnano I, Starace G et al. (2000). Arrest of G1-S progression by the p53-inducible gene PC3 is Rb dependent and relies on the inhibition of Cyclin D1 transcription. Mol Cell Biol 20: 1797–1815.

    Article  CAS  Google Scholar 

  • Kotake Y, Cao R, Viatour P, Sage J, Zhang Y, Xiong Y . (2007). pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4a tumor suppressor gene. Genes Dev 21: 49–54.

    Article  CAS  Google Scholar 

  • Lin W-J, Gary JD, Yang MC, Clarke S, Herschman HR . (1996). The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase. J Biol Chem 271: 15034–15044.

    Article  CAS  Google Scholar 

  • Majumder PK, Grisanzio C, O'Connell F, Barry M, Brito JM, Xu Q et al. (2008). A prostatic intraepithelial neoplasia-dependent p27Kip1 checkpoint induces senescenc and inhibits cell proliferation and cancer progression. Cancer Cell 14: 146–155.

    Article  CAS  Google Scholar 

  • Mallette FA, Ferbeyre G . (2007). The DNA damage signaling pathway connects oncogenic stress to cellular senescence. Cell Cycle 6: 1831–1836.

    Article  CAS  Google Scholar 

  • Matsuda S, Rouault R-P, Magaud J-P, Berthet C . (2001). In search of a function for the TES21/PC3/BTG1/TOB family. FEBS Lett 497: 67–72.

    Article  CAS  Google Scholar 

  • Narita M, Nuñez S, Heard E, Narita M, Lin AW, Heran SA et al. (2003). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113: 703–716.

    Article  CAS  Google Scholar 

  • Ou Y-H, Chung P-H, Hsu F-F, Sun T-P, Chang W-Y, Shieh S-Y . (2007). The candidate tumor suppressor BTG3 is a transcriptional target of p53 that inhibits E2F1. EMBO J 26: 3968–3980.

    Article  CAS  Google Scholar 

  • Ou Y-H, Chung P-H, Sun T-P, Shieh S-Y . (2005). p53 C-terminal phosphorylation by CHK1 and CHK2 participates in the regulation of DNA damage-induced C-terminal acetylation. Mol Biol Cell 16: 1684–1695.

    Article  CAS  Google Scholar 

  • Rahmani Z . (2006). APRO4 negatively regulates Src tyrosine kinase activity in PC12 cells. J Cell Sci 119: 646–658.

    Article  CAS  Google Scholar 

  • Rodier F, Coppé J-P, Patil CK, Hoeijmakers WAM, Muñoz DP, Raza SR et al. (2009). Persistent DNA damage signaling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11: 973–979.

    Article  CAS  Google Scholar 

  • Tirone F . (2001). The gene PC3TIS21/BTG2, prototype member of the PC3/BTG/TOB family: regulator in control of cell growth, differentiation, and DNA repair? J Cell Physiol 187: 155–165.

    Article  CAS  Google Scholar 

  • Winkler GS . (2009). The mammalian anti-proliferative BTG/Tob protein family. J Cell Physiol 222: 66–72.

    Article  Google Scholar 

  • Yoneda M, Suzuki T, Nakamur T, Ajima R, Yoshida Y, Kakuta S et al. (2009). Deficiency of antiproliferative family protein Ana correlates with development of lung adenocarcinoma. Cancer Sci 100: 225–232.

    Article  CAS  Google Scholar 

  • Young AP, Schlisio S, Minamishima YA, Zhang Q, Li L, Grisanzio C et al. (2008). VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nat Cell Biol 10: 361–367.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Science Council of Taiwan and Academia Sinica to S-Y Shieh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S-Y Shieh.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, TY., Cheng, YC., Yang, HC. et al. Loss of the candidate tumor suppressor BTG3 triggers acute cellular senescence via the ERK–JMJD3–p16INK4a signaling axis. Oncogene 31, 3287–3297 (2012). https://doi.org/10.1038/onc.2011.491

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.491

Keywords

This article is cited by

Search

Quick links