Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

MicroRNA-mediated breast cancer metastasis: from primary site to distant organs

Abstract

The recent upsurge of interest in microRNA (miRNA) is partly attributed to the discovery of the novel roles of miRNAs in many physiological and pathological processes, including tumor development. Research on breast cancer metastasis has also focused on the concept of miRNA, which can act either as promoters or as suppressors of metastases. This review will focus on a series of recent studies that demonstrate the involvement of miRNAs in breast cancer metastasis and will briefly describe various pathways of miRNA-regulated metastasis. Finally, future prospects will be discussed for the potential role of miRNAs as predictive markers and therapeutic agents for patients with breast cancer metastases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

BMP:

bone morphogenetic protein

BRMS1:

breast cancer metastasis-suppressor 1

ECM:

extracellular matrix

EGFR:

epidermal growth factor receptor

EMT:

epithelial–mesenchymal transition

FAP-1:

Fas-associated phosphatase-1

HMGA2:

high mobility group AT-hook 2

HOXD10:

homeobox D10

IL-8:

interleukin 8

MERTK:

c-Mer tyrosine kinase

ER alpha:

Estrogen receptor alpha

MMP:

matrix metalloproteinase

ND:

not determined

NF-κB:

nuclear factor-κB

PDCD4:

tumor suppressor programmed cell death 4

RhoA and RhoC:

two members of the Rho GTPase family

SATB1:

special AT-rich sequence-binding protein-1

TGF-β:

Transforming growth factor-β

Tiam1:

T lymphoma invasion and metastasis 1

TIMP3:

tissue inhibitor of metalloproteinase 3

TNC:

tenascin C

TPM1:

tropomyosin 1

Tristetraprolin:

TTP

uPA:

urokinase-type plasminogen activator

VEGF:

vascular endothelial growth factor

ZEBs:

zinc finger E-box-binding homeoboxes

References

  • Adams BD, Cowee DM, White BA . (2009). The role of miR-206 in the epidermal growth factor (EGF) induced repression of estrogen receptor-alpha (ERalpha) signaling and a luminal phenotype in MCF-7 breast cancer cells. Mol Endocrinol 23: 1215–1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand S, Majeti BK, Acevedo LM, Murphy EA, Mukthavaram R, Scheppke L et al. (2010). MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med 16: 909–914.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baffa R, Fassan M, Volinia S, O'Hara B, Liu CG, Palazzo JP et al. (2009). MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol 219: 214–221.

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP . (2009). MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baum B, Settleman J, Quinlan MP . (2008). Transitions between epithelial and mesenchymal states in development and disease. Semin Cell Dev Biol 19: 294–308.

    CAS  PubMed  Google Scholar 

  • Berezikov E, Cuppen E, Plasterk RH . (2006). Approaches to microRNA discovery. Nat Genet 38: S2–S7.

    CAS  PubMed  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ . (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409: 363–366.

    CAS  PubMed  Google Scholar 

  • Bhaumik D, Scott GK, Schokrpur S, Patil CK, Campisi J, Benz CC . (2008). Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene 27: 5643–5647.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bourguignon LY, Wong G, Earle C, Krueger K, Spevak CC . (2010). Hyaluronan-CD44 interaction promotes c-Src-mediated twist signaling, MicroRNA-10b expression and RhoA/RhoC upregulation leading to Rho-kinase-associated Cytoskeleton Activation and Breast Tumor Cell Invasion. J Biol Chem 285: 36721–36735.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brabletz S, Brabletz T . (2010). The ZEB/miR-200 feedback loop--a motor of cellular plasticity in development and cancer? EMBO Rep 11: 670–677.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T . (2005). Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer 5: 744–749.

    CAS  PubMed  Google Scholar 

  • Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF et al. (2008). A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68: 7846–7854.

    CAS  PubMed  Google Scholar 

  • Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9: 582–589.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cabodi S, Taverna D . (2010). Interfering with inflammation: a new strategy to block breast cancer self-renewal and progression? Breast Cancer Res 12: 305.

    PubMed  PubMed Central  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101: 2999–3004.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang AC, Massague J . (2008). Molecular basis of metastasis. N Engl J Med 359: 2814–2823.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christoffersen NR, Silahtaroglu A, Orom UA, Kauppinen S, Lund AH . (2007). miR-200b mediates post-transcriptional repression of ZFHX1B. RNA 13: 1172–1178.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cicek M, Fukuyama R, Welch DR, Sizemore N, Casey G . (2005). Breast cancer metastasis suppressor 1 inhibits gene expression by targeting nuclear factor-kB activity. Cancer Res 65: 3586–3595.

    CAS  PubMed  Google Scholar 

  • Connolly EC, Van Doorslaer K, Rogler LE, Rogler CE . (2010). Overexpression of miR-21 promotes an in vitro metastatic phenotype by targeting the tumor suppressor RHOB. Mol Cancer Res 8: 691–700.

    CAS  PubMed  Google Scholar 

  • Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM et al. (2009). Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J 28: 347–358.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davis BN, Hilyard AC, Lagna G, Hata A . (2008). SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454: 56–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dean M, Fojo T, Bates S . (2005). Tumour stem cells and drug resistance. Nat Rev Cancer 5: 275–284.

    CAS  PubMed  Google Scholar 

  • Di Leva G, Gasparini P, Piovan C, Ngankeu A, Garofalo M, Taccioli C et al. (2010). MicroRNA cluster 221-222 and estrogen receptor alpha interactions in breast cancer. J Natl Cancer Inst 102: 706–721.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du J, Yang S, An D, Hu F, Yuan W, Zhai C et al. (2009). BMP-6 inhibits microRNA-21 expression in breast cancer through repressing deltaEF1 and AP-1. Cell Res 19: 487–496.

    CAS  PubMed  Google Scholar 

  • Dykxhoorn DM, Wu Y, Xie H, Yu F, Lal A, Petrocca F et al. (2009). miR-200 Enhances Mouse Breast Cancer Cell Colonization to Form Distant Metastases. PLoS One 4: e7181.

    PubMed  PubMed Central  Google Scholar 

  • Edmonds MD, Hurst DR, Vaidya KS, Stafford LJ, Chen D, Welch DR . (2009). Breast cancer metastasis suppressor 1 coordinately regulates metastasis-associated microRNA expression. Int J Cancer 125: 1778–1785.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esquela-Kerscher A, Slack FJ . (2006). Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6: 259–269.

    CAS  PubMed  Google Scholar 

  • Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E et al. (2007). microRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104: 15805–15810.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fidler IJ . (1975). Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res 35: 218–224.

    CAS  PubMed  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N . (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9: 102–114.

    CAS  PubMed  Google Scholar 

  • Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD et al. (2008). miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15: 272–284.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foekens JA, Sieuwerts AM, Smid M, Look MP, de Weerd V, Boersma AW et al. (2008). Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc Natl Acad Sci USA 105: 13021–13026.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Förstemann K, Horwich MD, Wee L, Tomari Y, Zamore PD . (2007). Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. Cell 130: 287–297.

    PubMed  PubMed Central  Google Scholar 

  • Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH . (2008). Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283: 1026–1033.

    CAS  PubMed  Google Scholar 

  • Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS et al. (2008). MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28: 5369–5380.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garzon R, Marcucci G, Croce CM . (2010). Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9: 775–789.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gebeshuber CA, Zatloukal K, Martinez J . (2009). miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep 10: 400–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gee HE, Camps C, Buffa FM, Colella S, Sheldon H, Gleadle JM et al. (2008). MicroRNA-10b and breast cancer metastasis. Nature 455: E8–E9.

    CAS  PubMed  Google Scholar 

  • Gibbons DL, Lin W, Creighton CJ, Rizvi ZH, Gregory PA, Goodall GJ et al. (2009). Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev 23: 2140–2151.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Götte M, Mohr C, Koo CY, Stock C, Vaske AK, Viola M et al. (2010). miR-145-dependent targeting of Junctional Adhesion Molecule A and modulation of fascin expression are associated with reduced breast cancer cell motility and invasiveness. Oncogene 29: 6569–6580.

    PubMed  Google Scholar 

  • Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10: 593–601.

    CAS  PubMed  Google Scholar 

  • Grelier G, Voirin N, Ay AS, Cox DG, Chabaud S, Treilleux I et al. (2009). Prognostic value of Dicer expression in human breast cancers and association with the mesenchymal phenotype. Br J Cancer 101: 673–683.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I et al. (2001). Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106: 23–34.

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2011). Hallmarks of cancer: the next generation. Cell 144: 646–674.

    CAS  PubMed  Google Scholar 

  • Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ . (2008). MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA 105: 1516–1521.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hedley BD, Chambers AF . (2009). Tumor dormancy and metastasis. Adv Cancer Res 102: 67–101.

    CAS  PubMed  Google Scholar 

  • Hirschmann-Jax C, Foster AE, Wulf GG et al. (2004). A distinct ‘side population’ of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101: 14228–14233.

    CAS  PubMed  Google Scholar 

  • Horikawa T, Yang J, Kondo S, Yoshizaki T, Joab I, Furukawa M et al. (2007). Twist and epithelial-mesenchymal transition are induced by the EBV oncoprotein latent membrane protein 1 and are associated with metastatic nasopharyngeal carcinoma. Cancer Res 67: 1970–1978.

    CAS  PubMed  Google Scholar 

  • Hoser M, Baader SL, Bösl MR, Ihmer A, Wegner M, Sock E . (2007). Prolonged glial expression of Sox4 in the CNS leads to architectural cerebellar defects and ataxia. J Neurosci 27: 5495–5505.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S et al. (2008). The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10: 202–210.

    CAS  PubMed  Google Scholar 

  • Huang TH, Wu FT, Loeb GB, Hsu R, Heidersbach A, Brincat A et al. (2009). Up-regulation of miR-21 by HER2/neu Signaling Promotes Cell Invasion. J Biol Chem 284: 18515–18524.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hurst DR, Edmonds MD, Scott GK, Benz CC, Vaidya KS, Welch DR . (2009a). Breast cancer metastasis suppressor 1, BRMS1, up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Res 69: 1279–1283.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hurst DR, Edmonds MD, Welch DR . (2009b). Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res 69: 7495–7498.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hurst DR, Xie Y, Vaidya KS, Mehta A, Moore BP, Accavitti-Loper MA et al. (2008). Alterations of BRMS1-ARID4A interaction modify gene expression but still suppress metastasis in human breast cancer cells. J Biol Chem 283: 7438–7444.

    CAS  PubMed  Google Scholar 

  • Hurteau GJ, Carlson JA, Spivack SD, Brock GJ . (2007). Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of Ecadherin. Cancer Res 67: 7972–7976.

    CAS  PubMed  Google Scholar 

  • Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T, Zamore PD . (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293: 834–838.

    PubMed  Google Scholar 

  • Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K . (2010). Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 39: 761–772.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iliopoulos D, Polytarchou C, Hatziapostolou M, Kottakis F, Maroulakou IG, Struhl K et al. (2009). MicroRNAs differentially regulated by Akt isoforms control EMT and stem cell renewal in cancer cells. Sci Signal 2: ra62.

    PubMed  PubMed Central  Google Scholar 

  • Iorio MV, Casalini P, Piovan C, Di Leva G, Merlo A, Triulzi T et al. (2009). microRNA-205 regulates HER3 in human breast cancer. Cancer Res 69: 2195–2200.

    CAS  PubMed  Google Scholar 

  • Jin Z, Xie T . (2007). Dcr-1 maintains Drosophila ovarian stem cells. Curr Biol 17: 539–544.

    CAS  PubMed  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. (2005). RAS is regulated by the let-7 microRNA family. Cell 120: 635–647.

    CAS  PubMed  Google Scholar 

  • Kang Y, Massagué J . (2004). Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118: 277–279.

    CAS  PubMed  Google Scholar 

  • Karin M . (2006). Nuclear factor-kappaB in cancer development and progression. Nature 441: 431–436.

    CAS  PubMed  Google Scholar 

  • Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449: 557–563.

    CAS  PubMed  Google Scholar 

  • Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R et al. (2010). Transcriptional control of gene expression by microRNAs. Cell 140: 111–122.

    CAS  PubMed  Google Scholar 

  • Kim DH, Saetrom P, Snøve Jr O, Rossi JJ . (2008). MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA 105: 16230–16235.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo N, Toyama T, Sugiura H, Fujii Y, Yamashita H . (2008). miR-206 Expression is down-regulated in estrogen receptor alpha-positive human breast cancer. Cancer Res 68: 5004–5008.

    CAS  PubMed  Google Scholar 

  • Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS et al. (2008). MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 28: 6773–6784.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korpal M, Lee ES, Hu G, Kang Y . (2008). The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283: 14910–14914.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J et al. (2009). Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev 23: 2700–2704.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leivonen SK, Mäkelä R, Ostling P, Kohonen P, Haapa-Paananen S, Kleivi K et al. (2009). Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines. Oncogene 28: 3926–3936.

    CAS  PubMed  Google Scholar 

  • Li F, Tiede B, Massagué J, Kang Y . (2007). Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 17: 3–14.

    CAS  PubMed  Google Scholar 

  • Li QQ, Chen ZQ, Cao XX, Xu JD, Xu JW, Chen YY et al. (2011). Involvement of NF-kappaB/miR-448 regulatory feedback loop in chemotherapy-induced epithelial-mesenchymal transition of breast cancer cells. Cell Death Differ 18: 16–25.

    PubMed  Google Scholar 

  • Li S, Wang Q, Wang Y, Chen X, Wang Z . (2009a). PLC-gamma1 and Rac1 coregulate EGF-induced cytoskeleton remodeling and cell migration. Mol Endocrinol 23: 901–913.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li XF, Yan PJ, Shao ZM . (2009b). Downregulation of miR-193b contributes to enhance urokinase-type plasminogen activator (uPA) expression and tumor progression and invasion in human breast cancer. Oncogene 28: 3937–3948.

    CAS  PubMed  Google Scholar 

  • Li X, Shen Y, Ichikawa H, Antes T, Goldberg GS . (2009c). Regulation of miRNA expression by Src and contact normalization: effects on nonanchored cell growth and migration. Oncogene 28: 4272–4283.

    CAS  PubMed  Google Scholar 

  • Lim PK, Bliss SA, Patel SA, Taborga M, Dave MA, Gregory LA et al. (2011). Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res 71: 1550–1560.

    CAS  PubMed  Google Scholar 

  • Lin SL, Chiang A, Chang D, Ying SY . (2008). Loss of miR-146a function in hormone-refractory prostate cancer. RNA 14: 417–424.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435: 834–838.

    CAS  PubMed  Google Scholar 

  • Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH et al. (2008). MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27: 4373–4379.

    CAS  PubMed  Google Scholar 

  • Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, Marcusson EG et al. (2010a). Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 28: 341–347.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Teruya-Feldstein J, Weinberg RA . (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449: 682–688.

    CAS  PubMed  Google Scholar 

  • Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D et al. (2010b). miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12: 247–271.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. (2008). The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133: 704–715.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S et al. (2010). A MicroRNA targeting dicer for metastasis control. Cell 141: 1195–1207.

    CAS  PubMed  Google Scholar 

  • Mayr C, Hemann MT, Bartel DP . (2007). Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315: 1576–1579.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moriarty CH, Pursell B, Mercurio AM . (2010). miR-10b targets Tiam1: implications for Rac activation and carcinoma migration. J Biol Chem 285: 20541–20546.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA . (2009). MicroRNAs--the micro steering wheel of tumour metastases. Nat Rev Cancer 9: 293–302.

    CAS  PubMed  Google Scholar 

  • Ørom UA, Nielsen FC, Lund AH . (2008). MicroRNA-10a binds the 5′ UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30: 460–471.

    PubMed  Google Scholar 

  • Pandey DP, Picard D . (2009). miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor alpha mRNA. Mol Cell Biol 29: 3783–3790.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park SM, Gaur AB, Lengyel E, Peter ME . (2008). The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22: 894–907.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel JB, Appaiah HN, Burnett RM, Bhat-Nakshatri P, Wang G, Mehta R et al. (2011). Control of EVI-1 oncogene expression in metastatic breast cancer cells through microRNA miR-22. Oncogene 30: 1290–1301.

    CAS  PubMed  Google Scholar 

  • Pawelek JM, Chakraborty AK . (2008). Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat Rev Cancer 8: 377–386.

    CAS  PubMed  Google Scholar 

  • Phadke PA, Vaidya KS, Nash KT, Hurst DR, Welch DR . (2008). BRMS1 suppresses breast cancer experimental metastasis to multiple organs by inhibiting several steps of the metastatic process. Am J Pathol 172: 809–817.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R . (2008). MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 105: 1608–1613.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polyak K, Weinberg RA . (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9: 265–273.

    CAS  PubMed  Google Scholar 

  • Reddy SD, Ohshiro K, Rayala SK, Kumar R . (2008). MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Res 68: 8195–8200.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy SD, Pakala SB, Ohshiro K, Rayala SK, Kumar R . (2009). MicroRNA-661, a c/EBPalpha target, inhibits metastatic tumor antigen 1 and regulates its functions. Cancer Res 69: 5639–5642.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL . (2001). Stem cells, cancer, and cancer stem cells. Nature 414: 105–111.

    CAS  PubMed  Google Scholar 

  • Sachdeva M, Mo YY . (2010). MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res 70: 378–387.

    CAS  PubMed  Google Scholar 

  • Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S et al. (2009). p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA 106: 3207–3212.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schickel R, Park SM, Murmann AE, Peter ME . (2010). miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1. Mol Cell 38: 908–915.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selaru FM, Olaru AV, Kan T, David S, Cheng Y, Mori Y et al. (2009). MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology 49: 1595–1601.

    CAS  PubMed  Google Scholar 

  • Sempere LF, Preis M, Yezefski T, Ouyang H, Suriawinata AA, Silahtaroglu A et al. (2010). Fluorescence-based codetection with protein markers reveals distinct cellular compartments for altered MicroRNA expression in solid tumors. Clin Cancer Res 16: 4246–4255.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sethi G, Sung B, Aggarwal BB . (2008). Nuclear factor-kappaB activation: from bench to bedside. Exp Biol Med 233: 21–31.

    CAS  Google Scholar 

  • Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D et al. (2009). Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138: 592–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY . (2007). miR-21-mediated tumor growth. Oncogene 26: 2799–2803.

    CAS  PubMed  Google Scholar 

  • Song G, Zhang Y, Wang L . (2009). microRNA-206 targets NOTCH3, activates apoptosis, inhibits tumor cell migration and foci formation. J Biol Chem 284: 31921–31927.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spizzo R, Nicoloso MS, Lupini L, Lu Y, Fogarty J, Rossi S et al. (2010). miR-145 participates with TP53 in a death-promoting regulatory loop and targets estrogen receptor-alpha in human breast cancer cells. Cell Death Differ 17: 246–254.

    CAS  PubMed  Google Scholar 

  • Stark A, Lin MF, Kheradpour P, Pedersen JS, Parts L, Carlson JW et al. (2007). Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature 450: 219–232.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su X, Chakravarti D, Cho MS, Liu L, Gi YJ, Liu YL et al. (2010). TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 467: 986–990.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talmadge JE, Fidler IJ . (2010). AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70: 5649–5669.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tavazoie SF, Alarcón C, Oskarsson T, Padua D, Wang Q, Bos PD et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451: 147–152.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thiery JP . (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2: 442–454.

    CAS  PubMed  Google Scholar 

  • Uhlmann S, Zhang JD, Schwäger A, Mannsperger H, Riazalhosseini Y, Burmester S et al. (2010). miR-200bc/429 cluster targets PLCgamma1 and differentially regulates proliferation and EGF-driven invasion than miR-200a/141 in breast cancer. Oncogene 29: 4297–4306.

    CAS  PubMed  Google Scholar 

  • Van Waes C . (2007). Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clin Cancer Res 13: 1076–1082.

    CAS  PubMed  Google Scholar 

  • Vaidya KS, Harihar S, Stafford LJ, Stafford LJ, Hurst DR, Hicks DG et al. (2008). Breast cancer metastasis suppressor-1 differentially modulates growth factor signaling. J Biol Chem 283: 28354–28360.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valastyan S, Benaich N, Chang A, Reinhardt F, Weinberg RA . (2009a). Concomitant suppression of three target genes can explain the impact of a microRNA on metastasis. Genes Dev 23: 2592–2597.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valastyan S, Chang A, Benaich N, Reinhardt F, Weinberg RA . (2010). Concurrent suppression of integrin alpha5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis. Cancer Res 70: 5147–5154.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szász AM, Wang ZC et al. (2009b). A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137: 1032–1046.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vetter G, Saumet A, Moes M, Vallar L, Le Béchec A, Laurini C et al. (2010). miR-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers. Oncogene 29: 4436–4448.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waghorne C, Thomas M, Lagarde A, Kerbel RS, Breitman ML . (1988). Genetic evidence for progressive selection and overgrowth of primary tumors by metastatic cell subpopulations. Cancer Res 48: 6109–6114.

    CAS  PubMed  Google Scholar 

  • Wang K, Li J, Li S, Bolund L, Wiuf C . (2009). Estimation of tumor heterogeneity using CGH array data. BMC Bioinformatics 10: 12.

    PubMed  PubMed Central  Google Scholar 

  • Webster RJ, Giles KM, Price KJ, Zhang PM, Mattick JS, Leedman PJ . (2009). Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J Biol Chem 284: 5731–5741.

    CAS  PubMed  Google Scholar 

  • Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A et al. (2009). The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11: 1487–1495.

    CAS  PubMed  Google Scholar 

  • Wu F, Zhu S, Ding Y, Beck WT, Mo YY . (2009a). MicroRNA-mediated regulation of Ubc9 expression in cancer cells. Clin Cancer Res 15: 1550–1557.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Zhu S, Mo YY . (2009b). Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res 19: 439–448.

    CAS  PubMed  Google Scholar 

  • Xu D, Takeshita F, Hino Y, Fukunaga S, Kudo Y, Tamaki A et al. (2011). miR-22 represses cancer progression by inducing cellular senescence. J Cell Biol 193: 409–424.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL et al. (2008). MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14: 2348–2360.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117: 927–939.

    CAS  PubMed  Google Scholar 

  • Yang J, Weinberg RA . (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14: 818–829.

    CAS  PubMed  Google Scholar 

  • Yu F, Deng H, Yao H, Liu Q, Su F, Song E . (2010a). miR-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 29: 4194–4204.

    CAS  PubMed  Google Scholar 

  • Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C et al. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131: 1109–1123.

    CAS  PubMed  Google Scholar 

  • Yu Z, Wang C, Wang M, Li Z, Casimiro MC, Liu M et al. (2008). A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol 182: 509–517.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Willmarth NE, Zhou J, Katiyar S, Wang M, Liu Y et al. (2010b). microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proc Natl Acad Sci USA 107: 8231–8236.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z et al. (2010). Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39: 133–144.

    CAS  PubMed  Google Scholar 

  • Zhu S, Si ML, Wu H, Mo YY . (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282: 14328–14336.

    CAS  PubMed  Google Scholar 

  • Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY . (2008). MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18: 350–359.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Bing Xia for a critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Wang, J. MicroRNA-mediated breast cancer metastasis: from primary site to distant organs. Oncogene 31, 2499–2511 (2012). https://doi.org/10.1038/onc.2011.444

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.444

Keywords

This article is cited by

Search

Quick links