Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Rack1 protects N-terminal phosphorylated c-Jun from Fbw7-mediated degradation

Abstract

The c-Jun transcription factor is a highly unstable oncoprotein. Several ubiquitin ligases mediate c-Jun degradation. However, c-Jun can be stabilized once it is phosphorylated at the N-terminus by c-Jun N-terminal kinases (JNKs) or other protein kinases. This phosphorylation decreases c-Jun ubiquitination and degradation. The underlying mechanism for this phenomenon is still unknown. Here, we show that receptor for activated C-kinase 1 (Rack1) can bind with c-Jun and ubiquitin ligase Fbw7 to form a complex. When c-Jun is phosphorylated at the N-terminus, c-Jun is released from the complex and cannot be ubiquitinated by Fbw7, which leads to increased stabilization and accumulation of c-Jun. These results reveal that Rack1 has a very important role in tumorigenesis by maintaining the stability of c-Jun that has been phosphorylated at its N-terminus by JNKs or other kinases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Berns H, Humar R, Hengerer B, Kiefer FN, Battegay EJ . (2000). RACK1 is up-regulated in angiogenesis and human carcinomas. FASEB J 14: 2549–2558.

    Article  CAS  PubMed  Google Scholar 

  • Bernstein LR, Colburn NH . (1989). AP1/jun function is differentially induced in promotion-sensitive and resistant JB6 cells. Science 244: 566–569.

    Article  CAS  PubMed  Google Scholar 

  • Binetruy B, Smeal T, Karin M . (1991). Ha-Ras augments c-Jun activity and stimulates phosphorylation of its activation domain. Nature 351: 122–127.

    Article  CAS  PubMed  Google Scholar 

  • Cao XX, Xu JD, Liu XL, Xu JW, Wang WJ, Li QQ et al. (2009a). RACK1: A superior independent predictor for poor clinical outcome in breast cancer. Int J Cancer 127: 1172–1179.

    Article  Google Scholar 

  • Cao XX, Xu JD, Xu JW, Liu XL, Cheng YY, Wang WJ et al. (2009b). RACK1 promotes breast carcinoma proliferation and invasion/metastasis in vitro and in vivo. Breast Cancer Res Treat 123: 375–386.

    Article  PubMed  Google Scholar 

  • Cho YY, Tang F, Yao K, Lu C, Zhu F, Zheng D et al. (2009). Cyclin-dependent kinase-3-mediated c-Jun phosphorylation at Ser63 and Ser73 enhances cell transformation. Cancer Res 69: 272–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark GJ, Cox AD, Graham SM, Der CJ . (1995). Biological assays for Ras transformation. Methods Enzymol 255: 395–412.

    Article  CAS  PubMed  Google Scholar 

  • Dong Z, Colburn NH . (1994). AP-1: a molecular target for prevention of carcinogenesis. In: Srivastava S, Lippman SM, Hong WK, Mulshine JL (eds). Early Detection of Cancer. Futura Publishing Corp: Armonk, NY, pp 123–130.

    Google Scholar 

  • Eferl R, Wagner EF . (2003). AP-1: a double-edged sword in tumorigenesis. Nat Rev 3: 859–868.

    Article  CAS  Google Scholar 

  • Egidy G, Jule S, Bosse P, Bernex F, Geffrotin C, Vincent-Naulleau S et al. (2008). Transcription analysis in the MeLiM swine model identifies RACK1 as a potential marker of malignancy for human melanocytic proliferation. Mol Cancer 7: 34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao M, Labuda T, Xia Y, Gallagher E, Fang D, Liu YC et al. (2004). Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch. Science 306: 271–275.

    Article  CAS  PubMed  Google Scholar 

  • Hao B, Oehlmann S, Sowa ME, Harper JW, Pavletich NP . (2007). Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol Cell 26: 131–143.

    Article  CAS  PubMed  Google Scholar 

  • Liu YV, Baek JH, Zhang H, Diez R, Cole RN, Semenza GL . (2007). RACK1 competes with HSP90 for binding to HIF-1alpha and is required for O(2)-independent and HSP90 inhibitor-induced degradation of HIF-1alpha. Mol Cell 25: 207–217.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopez-Bergami P, Habelhah H, Bhoumik A, Zhang W, Wang LH, Ronai Z . (2005). RACK1 mediates activation of JNK by protein kinase C [corrected]. Mol Cell 19: 309–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Bergami P, Huang C, Goydos JS, Yip D, Bar-Eli M, Herlyn M et al. (2007). Rewired ERK-JNK signaling pathways in melanoma. Cancer Cell 11: 447–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musti AM, Treier M, Bohmann D . (1997). Reduced ubiquitin-dependent degradation of c-Jun after phosphorylation by MAP kinases. Science 275: 400–402.

    Article  CAS  PubMed  Google Scholar 

  • Nagashio R, Sato Y, Matsumoto T, Kageyama T, Satoh Y, Shinichiro R et al. (2009). Expression of RACK1 is a novel biomarker in pulmonary adenocarcinomas. Lung Cancer 69: 54–59.

    Article  PubMed  Google Scholar 

  • Nateri AS, Riera-Sans L, Da Costa C, Behrens A . (2004). The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling. Science 303: 1374–1378.

    Article  CAS  PubMed  Google Scholar 

  • Papavassiliou AG, Treier M, Bohmann D . (1995). Intramolecular signal transduction in c-Jun. EMBO J 14: 2014–2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popov N, Wanzel M, Madiredjo M, Zhang D, Beijersbergen R, Bernards R et al. (2007). The ubiquitin-specific protease USP28 is required for MYC stability. Nat Cell Biol 9: 765–774.

    Article  CAS  PubMed  Google Scholar 

  • Schechtman D, Mochly-Rosen D . (2001). Adaptor proteins in protein kinase C-mediated signal transduction. Oncogene 20: 6339–6347.

    Article  CAS  PubMed  Google Scholar 

  • Schubbert S, Shannon K, Bollag G . (2007). Hyperactive Ras in developmental disorders and cancer. Nat Rev 7: 295–308.

    Article  CAS  Google Scholar 

  • Sengupta J, Nilsson J, Gursky R, Spahn CM, Nissen P, Frank J . (2004). Identification of the versatile scaffold protein RACK1 on the eukaryotic ribosome by cryo-EM. Nat Struct Mol Biol 11: 957–962.

    Article  CAS  PubMed  Google Scholar 

  • Shaulian E, Karin M . (2001). AP-1 in cell proliferation and survival. Oncogene 20: 2390–2400.

    Article  CAS  PubMed  Google Scholar 

  • Smeal T, Binetruy B, Mercola DA, Birrer M, Karin M . (1991). Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature 354: 494–496.

    Article  CAS  PubMed  Google Scholar 

  • Stambolic V, Woodgett JR . (1994). Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem J 303: 701–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornton C, Tang KC, Phamluong K, Luong K, Vagts A, Nikanjam D et al. (2004). Spatial and temporal regulation of RACK1 function and N-methyl-D-aspartate receptor activity through WD40 motif-mediated dimerization. J Biol Chem 279: 31357–31364.

    Article  CAS  PubMed  Google Scholar 

  • Vomastek T, Iwanicki MP, Schaeffer HJ, Tarcsafalvi A, Parsons JT, Weber MJ . (2007). RACK1 targets the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway to link integrin engagement with focal adhesion disassembly and cell motility. Mol Cell Biol 27: 8296–8305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Jiang L, Huang C, Li Z, Chen L, Gou L et al. (2008). Comparative proteomics approach to screening of potential diagnostic and therapeutic targets for oral squamous cell carcinoma. Mol Cell Proteomics 7: 1639–1650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W, Jin J, Schlisio S, Harper JW, Kaelin Jr WG . (2005). The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 8: 25–33.

    Article  CAS  PubMed  Google Scholar 

  • Weiss C, Schneider S, Wagner EF, Zhang X, Seto E, Bohmann D . (2003). JNK phosphorylation relieves HDAC3-dependent suppression of the transcriptional activity of c-Jun. EMBO J 22: 3686–3695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welcker M, Clurman BE . (2008). FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev 8: 83–93.

    Article  CAS  Google Scholar 

  • Wertz IE, O'Rourke KM, Zhang Z, Dornan D, Arnott D, Deshaies RJ et al. (2004). Human De-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase. Science 303: 1371–1374.

    Article  CAS  PubMed  Google Scholar 

  • Young MR, Li JJ, Rincon M, Flavell RA, Sathyanarayana BK, Hunziker R et al. (1999). Transgenic mice demonstrate AP-1 (activator protein-1) transactivation is required for tumor promotion. Proceedings of the National Academy of Sciences of the United States of America 96: 9827–9832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu JY, DeRuiter SL, Turner DL . (2002). RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America 99: 6047–6052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Cheng GZ, Gong J, Hermanto U, Zong CS, Chan J et al. (2008). RACK1 and CIS mediate the degradation of BimEL in cancer cells. J Biol Chem 283: 16416–16426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Wang Luhai and Dr Ronai Ze’ev for providing the HA-FL-Rack1, HA-WD1-4-Rack1 and HA-WD5-7-Rack1 vectors and Dr Wei Wenyi for providing the Flag-wt-c-Jun, Flag-ΔJNK-c-Jun, Flag-AF-c-Jun and Flag-AF-ΔJNK-c-Jun plasmids. We also thank Dr Bohmann Dirk for providing the c-JunAla and c-JunAsp mutant c-Jun plasmids. This study was supported by The Hormel Foundation and National Institutes of Health grants CA077646, CA111536, CA120388, ES016548 and R37 CA081064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Dong.

Ethics declarations

Competing interests

The authors declare no conflict of interest

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Zhu, F., Li, X. et al. Rack1 protects N-terminal phosphorylated c-Jun from Fbw7-mediated degradation. Oncogene 31, 1835–1844 (2012). https://doi.org/10.1038/onc.2011.369

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.369

Keywords

This article is cited by

Search

Quick links