Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HES6 gene is selectively overexpressed in glioma and represents an important transcriptional regulator of glioma proliferation

Abstract

Malignant glioma is the most common brain tumor with 16 000 new cases diagnosed annually in the United States. We performed a systematic large-scale transcriptomics data mining study of 9783 tissue samples from the GeneSapiens database to systematically identify genes that are most glioma-specific. We searched for genes that were highly expressed in 322 glioblastoma multiforme tissue samples and 66 anaplastic astrocytomas as compared with 425 samples from histologically normal central nervous system. Transcription cofactor HES6 (hairy and enhancer of split 6) emerged as the most glioma-specific gene. Immunostaining of a tissue microarray showed HES6 expression in 335 (98.8%) out of the 339 glioma samples. HES6 was expressed in endothelial cells of the normal brain and glioma tissue. Recurrent grade 2 astrocytomas and grade 2 or 3 oligodendrogliomas showed higher levels of HES6 immunoreactivity than the corresponding primary tumors. High HES6 mRNA expression correlated with the proneural subtype that generally has a favorable outcome but is prone to recur. Functional studies suggested an important role for HES6 in supporting survival of glioma cells, as evidenced by reduction of cancer cell proliferation and migration after HES6 silencing. The biological role and consequences of HES6 silencing and overexpression was explored with genome-wide analyses, which implicated a role for HES6 in p53, c-myc and nuclear factor-κB transcriptional networks. We conclude that HES6 is important for glioma cell proliferation and migration, and may have a role in angiogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Bae S, Bessho Y, Hojo M, Kageyama R . (2000). The bHLH gene Hes6, an inhibitor of Hes1, promotes neuronal differentiation. Development 127: 2933–2943.

    CAS  PubMed  Google Scholar 

  • Cancer Genome Atlas Research Network (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455: 1061–1068.

    Article  Google Scholar 

  • Cooper LA, Gutman DA, Long Q, Johnson BA, Cholleti SR, Kurc T et al. (2010). The proneural molecular signature is enriched in oligodendrogliomas and predicts improved survival among diffuse gliomas. PLoS One 5: e12548.

    Article  Google Scholar 

  • Cossins J, Vernon AE, Zhang Y, Philpott A, Jones PH . (2002). Hes6 regulates myogenic differentiation. Development 129: 2195–2207.

    CAS  PubMed  Google Scholar 

  • Eun B, Cho B, Moon Y, Kim SY, Kim K, Kim H et al. (2010). Induction of neuronal apoptosis by expression of Hes6 via p53-dependent pathway. Brain Res 1313: 1–8.

    Article  CAS  Google Scholar 

  • Eun B, Lee Y, Hong S, Kim J, Lee HW, Kim K et al. (2008). Hes6 controls cell proliferation via interaction with cAMP-response element-binding protein-binding protein in the promyelocytic leukemia nuclear body. J Biol Chem 283: 5939–5949.

    Article  CAS  Google Scholar 

  • Gratton MO, Torban E, Jasmin SB, Theriault FM, German MS, Stifani S . (2003). Hes6 promotes cortical neurogenesis and inhibits Hes1 transcription repression activity by multiple mechanisms. Mol Cell Biol 23: 6922–6935.

    Article  CAS  Google Scholar 

  • Haapasalo JA, Nordfors KM, Hilvo M, Rantala IJ, Soini Y, Parkkila AK et al. (2006). Expression of carbonic anhydrase IX in astrocytic tumors predicts poor prognosis. Clin Cancer Res 12: 473–477.

    Article  CAS  Google Scholar 

  • Hartman J, Lam EW, Gustafsson JA, Strom A . (2009). Hes-6, an inhibitor of hes-1, is regulated by 17beta-estradiol and promotes breast cancer cell proliferation. Breast Cancer Res 11: R79.

    Article  Google Scholar 

  • Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J . (2006). RankProd: A bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 22: 2825–2827.

    Article  CAS  Google Scholar 

  • Illi B, Puri P, Morgante L, Capogrossi MC, Gaetano C . (2000). Nuclear factor-kappaB and cAMP response element binding protein mediate opposite transcriptional effects on the flk-1/KDR gene promoter. Circ Res 86: E110–E117.

    Article  CAS  Google Scholar 

  • Jennings BH, Tyler DM, Bray SJ . (1999). Target specificities of drosophila enhancer of split basic helix-loop-helix proteins. Mol Cell Biol 19: 4600–4610.

    Article  CAS  Google Scholar 

  • Jhas S, Ciura S, Belanger-Jasmin S, Dong Z, Llamosas E, Theriault FM et al. (2006). Hes6 inhibits astrocyte differentiation and promotes neurogenesis through different mechanisms. J Neurosci 26: 11061–11071.

    Article  CAS  Google Scholar 

  • Joensuu H, Puputti M, Sihto H, Tynninen O, Nupponen NN . (2005). Amplification of genes encoding KIT, PDGFRalpha and VEGFR2 receptor tyrosine kinases is frequent in glioblastoma multiforme. J Pathol 207: 224–231.

    Article  CAS  Google Scholar 

  • Kilpinen S, Autio R, Ojala K, Iljin K, Bucher E, Sara H et al. (2008). Systematic bioinformatic analysis of expression levels of 17 330 human genes across 9 783 samples from 175 types of healthy and pathological tissues. Genome Biol 9: R139.

    Article  Google Scholar 

  • Koyano-Nakagawa N, Kim J, Anderson D, Kintner C . (2000). Hes6 acts in a positive feedback loop with the neurogenins to promote neuronal differentiation. Development 127: 4203–4216.

    CAS  PubMed  Google Scholar 

  • Kumar HR, Zhong X, Sandoval JA, Hickey RJ, Malkas LH . (2008). Applications of emerging molecular technologies in glioblastoma multiforme. Expert Rev Neurother 8: 1497–1506.

    Article  Google Scholar 

  • Lassman AB, Dai C, Fuller GN, Vickers AJ, Holland EC . (2004). Overexpression of c-MYC promotes an undifferentiated phenotype in cultured astrocytes and allows elevated ras and akt signaling to induce gliomas from GFAP-expressing cells in mice. Neuron Glia Biol 1: 157–163.

    Article  Google Scholar 

  • Madhavan S, Zenklusen JC, Kotliarov Y, Sahni H, Fine HA, Buetow K . (2009). Rembrandt: Helping personalized medicine become a reality through integrative translational research. Mol Cancer Res 7: 157–167.

    Article  CAS  Google Scholar 

  • Margolin AA, Palomero T, Sumazin P, Califano A, Ferrando AA, Stolovitzky G . (2009). ChIP-on-chip significance analysis reveals large-scale binding and regulation by human transcription factor oncogenes. Proc Natl Acad Sci U S A 106: 244–249.

    Article  CAS  Google Scholar 

  • Mpindi JP, Sara H, Haapa-Paananen S, Kilpinen S, Pisto T, Bucher E et al. (2011). GTI: A novel algorithm for identifying outlier gene expression profiles from integrated microarray datasets. PLoS One 6: e17259.

    Article  CAS  Google Scholar 

  • Naumann U, Maass P, Gleske AK, Aulwurm S, Weller M, Eisele G . (2008). Glioma gene therapy with soluble transforming growth factor-beta receptors II and III. Int J Oncol 33: 759–765.

    CAS  PubMed  Google Scholar 

  • Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP et al. (2010). Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17: 510–522.

    Article  CAS  Google Scholar 

  • Ohgaki H, Kleihues P . (2009). Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci 100: 2235–2241.

    Article  CAS  Google Scholar 

  • Ohgaki H, Kleihues P . (2007). Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170: 1445–1453.

    Article  CAS  Google Scholar 

  • Ovaska K, Laakso M, Haapa-Paananen S, Louhimo R, Chen P, Aittomaki V et al. (2010). Large-scale data integration framework provides a comprehensive view on glioblastoma multiforme. Genome Med 2: 65.

    Article  Google Scholar 

  • Panicker SP, Raychaudhuri B, Sharma P, Tipps R, Mazumdar T, Mal AK et al. (2010). p300- and myc-mediated regulation of glioblastoma multiforme cell differentiation. Oncotarget 1: 289–303.

    PubMed  PubMed Central  Google Scholar 

  • Puputti M, Tynninen O, Sihto H, Blom T, Maenpaa H, Isola J et al. (2006). Amplification of KIT, PDGFRA, VEGFR2, and EGFR in gliomas. Mol Cancer Res 4: 927–934.

    Article  CAS  Google Scholar 

  • Schiffer D, Annovazzi L, Caldera V, Mellai M . (2010). On the origin and growth of gliomas. Anticancer Res 30: 1977–1998.

    CAS  PubMed  Google Scholar 

  • Sihto H, Tynninen O, Halonen M, Puputti M, Karjalainen-Lindsberg ML, Kukko H et al. (2009). Tumour microvessel endothelial cell KIT and stem cell factor expression in human solid tumours. Histopathology 55: 544–553.

    Article  Google Scholar 

  • Somasundaram K, Reddy SP, Vinnakota K, Britto R, Subbarayan M, Nambiar S et al. (2005). Upregulation of ASCL1 and inhibition of notch signaling pathway characterize progressive astrocytoma. Oncogene 24: 7073–7083.

    Article  CAS  Google Scholar 

  • Strojnik T, Rosland GV, Sakariassen PO, Kavalar R, Lah T . (2007). Neural stem cell markers, nestin and musashi proteins, in the progression of human glioma: Correlation of nestin with prognosis of patient survival. Surg Neurol 68: 133–143.

    Article  Google Scholar 

  • Swearingen ML, Sun D, Bourner M, Weinstein EJ . (2003). Detection of differentially expressed HES-6 gene in metastatic colon carcinoma by combination of suppression subtractive hybridization and cDNA library array. Cancer Lett 198: 229–239.

    Article  CAS  Google Scholar 

  • Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al. (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17: 98–110.

    Article  CAS  Google Scholar 

  • Vias M, Massie CE, East P, Scott H, Warren A, Zhou Z et al. (2008). Pro-neural transcription factors as cancer markers. BMC Med Genomics 1: 17.

    Article  Google Scholar 

  • Wang GK, Hu L, Fuller GN, Zhang W . (2006). An interaction between insulin-like growth factor-binding protein 2 (IGFBP2) and integrin alpha5 is essential for IGFBP2-induced cell mobility. J Biol Chem 281: 14085–14091.

    Article  CAS  Google Scholar 

  • Watson PA, Vinson C, Nesterova A, Reusch JE . (2002). Content and activity of cAMP response element-binding protein regulate platelet-derived growth factor receptor-alpha content in vascular smooth muscles. Endocrinology 143: 2922–2929.

    Article  CAS  Google Scholar 

  • Wesolowska A, Kwiatkowska A, Slomnicki L, Dembinski M, Master A, Sliwa M et al. (2008). Microglia-derived TGF-beta as an important regulator of glioblastoma invasion--an inhibition of TGF-beta-dependent effects by shRNA against human TGF-beta type II receptor. Oncogene 27: 918–930.

    Article  CAS  Google Scholar 

  • Wu J, Vallenius T, Ovaska K, Westermarck J, Makela TP, Hautaniemi S . (2009). Integrated network analysis platform for protein-protein interactions. Nat Methods 6: 75–77.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Academy of Finland Translational Genome-Scale Biology Center of Excellence, the Sigrid Juselius foundation and EU-FP6 project RIGHT (LSHB-CT-2004-005276). We acknowledge Dr Bokkee Eun for the generous gift of the HES6 overexpression plasmid pEYFP-C1-Hes6 (Eun et al., 2008). We also acknowledge the Finnish DNA Microarray Centre for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Haapa-Paananen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haapa-Paananen, S., Kiviluoto, S., Waltari, M. et al. HES6 gene is selectively overexpressed in glioma and represents an important transcriptional regulator of glioma proliferation. Oncogene 31, 1299–1310 (2012). https://doi.org/10.1038/onc.2011.316

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.316

Keywords

This article is cited by

Search

Quick links