Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification of a c-Jun N-terminal kinase-2-dependent signal amplification cascade that regulates c-Myc levels in ras transformation

Abstract

Ras is one of the most frequently activated oncogenes in cancer. Two mitogen-activated protein kinases (MAPKs) are important for ras transformation: extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase 2 (JNK2). Here we present a downstream signal amplification cascade that is critical for ras transformation in murine embryonic fibroblasts. This cascade is coordinated by ERK and JNK2 MAPKs, whose Ras-mediated activation leads to the enhanced levels of three oncogenic transcription factors, namely, c-Myc, activating transcription factor 2 (ATF2) and ATF3, all of which are essential for ras transformation. Previous studies show that ERK-mediated serine 62 phosphorylation protects c-Myc from proteasomal degradation. ERK is, however, not alone sufficient to stabilize c-Myc but requires the cooperation of cancerous inhibitor of protein phosphatase 2A (CIP2A), an oncogene that counteracts protein phosphatase 2A-mediated dephosphorylation of c-Myc. Here we show that JNK2 regulates Cip2a transcription via ATF2. ATF2 and c-Myc cooperate to activate the transcription of ATF3. Remarkably, not only ectopic JNK2, but also ectopic ATF2, CIP2A, c-Myc and ATF3 are sufficient to rescue the defective ras transformation of JNK2-deficient cells. Thus, these data identify the key signal converging point of JNK2 and ERK pathways and underline the central role of CIP2A in ras transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Alarcon-Vargas D, Ronai Z . (2004). c-Jun-NH2 kinase (JNK) contributes to the regulation of c-Myc protein stability. J Biol Chem 279: 5008–5016.

    Article  CAS  PubMed  Google Scholar 

  • Amati B, Frank SR, Donjerkovic D, Taubert S . (2001). Function of the c-Myc oncoprotein in chromatin remodeling and transcription. Biochim Biophys Acta 1471: M135–M145.

    CAS  PubMed  Google Scholar 

  • Behrens A, Jochum W, Sibilia M, Wagner EF . (2000). Oncogenic transformation by ras and fos is mediated by c-Jun N-terminal phosphorylation. Oncogene 19: 2657–2663.

    Article  CAS  PubMed  Google Scholar 

  • Berger AJ, Kluger HM, Li N, Kielhorn E, Halaban R, Ronai Z et al. (2003). Subcellular localization of activating transcription factor 2 in melanoma specimens predicts patient survival. Cancer Res 63: 8103–8107.

    CAS  PubMed  Google Scholar 

  • Bhoumik A, Gangi L, Ronai Z . (2004). Inhibition of melanoma growth and metastasis by ATF2-derived peptides. Cancer Res 64: 8222–8230.

    Article  CAS  PubMed  Google Scholar 

  • Bhoumik A, Ronai Z . (2008). ATF2: a transcription factor that elicits oncogenic or tumor suppressor activities. Cell Cycle 7: 2341–2345.

    Article  CAS  PubMed  Google Scholar 

  • Binetruy B, Smeal T, Karin M . (1991). Ha-Ras augments c-Jun activity and stimulates phosphorylation of its activation domain. Nature 351: 122–127.

    Article  CAS  PubMed  Google Scholar 

  • Bost F, McKay R, Bost M, Potapova O, Dean NM, Mercola D . (1999). The Jun kinase 2 isoform is preferentially required for epidermal growth factor-induced transformation of human A549 lung carcinoma cells. Mol Cell Biol 19: 1938–1949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunet A, Pages G, Pouyssegur J . (1994). Constitutively active mutants of MAP kinase kinase (MEK1) induce growth factor-relaxation and oncogenicity when expressed in fibroblasts. Oncogene 9: 3379–3387.

    CAS  PubMed  Google Scholar 

  • Cai Y, Zhang C, Naea T, Aso T, Tanaka M, Oshiro S et al. (2000). Homocysteine-responsive ATF3 gene expression in human vascular endothelial cells: activation of c-Jun NH2-terminal kinase and promoter response element. Blood 96: 2140–2148.

    CAS  PubMed  Google Scholar 

  • Chen N, Nomura M, She QB, Ma WY, Bode AM, Wang L et al. (2001). Suppression of skin tumorigenesis in c-Jun NH(2)-terminal kinase-2-deficient mice. Cancer Res 61: 3908–3912.

    CAS  PubMed  Google Scholar 

  • Ciardiello F, Valverius EM, Colucci-D'Amato GL, Kim N, Bassin RH, Salomon DS . (1990). Differential growth factor expression in transformed mouse NIH-3T3 cells. J Cell Biochem 42: 45–57.

    Article  CAS  PubMed  Google Scholar 

  • Come C, Laine A, Chanrion M, Edgren H, Mattila E, Liu X et al. (2009). CIP2A is associated with human breast cancer aggressivity. Clin Cancer Res 15: 5092–5100.

    Article  CAS  PubMed  Google Scholar 

  • Cowley S, Paterson H, Kemp P, Marshall CJ . (1994). Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77: 841–852.

    Article  CAS  PubMed  Google Scholar 

  • Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T et al. (1994). JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76: 1025–1037.

    Article  CAS  PubMed  Google Scholar 

  • Dietrich N, Thastrup J, Holmberg C, Gyrd-Hansen M, Fehrenbacher N, Lademann U et al. (2004). JNK2 mediates TNF-induced cell death in mouse embryonic fibroblasts via regulation of both caspase and cathepsin protease pathways. Cell Death Differ 11: 301–313.

    Article  CAS  PubMed  Google Scholar 

  • Eilers M, Eisenman RN . (2008). Myc’s broad reach. Genes Dev 22: 2755–2766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs SY, Tappin I, Ronai Z . (2000). Stability of the ATF2 transcription factor is regulated by phosphorylation and dephosphorylation. J Biol Chem 275: 12560–12564.

    Article  CAS  PubMed  Google Scholar 

  • Furth ME, Davis LJ, Fleurdelys B, Scolnick EM . (1982). Monoclonal antibodies to the p21 products of the transforming gene of Harvey murine sarcoma virus of the cellular ras gene family. J Virol 43: 294–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guccione E, Martinato F, Finocchiaro G, Luzi L, Tizzoni L, Dall' Olio V et al. (2006). Myc-binding-site recognition in the human genome is determined by chromatin context. Nat Cell Biol 8: 764–770.

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Dérijard B et al. (1996). Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 15: 2760–2770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Campbell D, Derijard B, Davis RJ . (1995). Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 267: 389–393.

    Article  CAS  PubMed  Google Scholar 

  • Hibi M, Lin A, Smeal T, Minden A, Karin M . (1993). Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev 7: 2135–2148.

    Article  CAS  PubMed  Google Scholar 

  • Hubbard TJ, Aken BL, Ayling S, Ballester B, Beal K, Bragin E et al. (2009). Ensembl 2009. Nucleic Acids Res 37: D690–D697.

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen K, Groth A, Willumsen BM . (2002). Ras-inducible immortalized fibroblasts: focus formation without cell cycle deregulation. Oncogene 21: 3058–3067.

    Article  CAS  PubMed  Google Scholar 

  • Johnson R, Spiegelman B, Hanahan D, Wisdom R . (1996). Cellular transformation and malignancy induced by ras require c-jun. Mol Cell Biol 16: 4504–4511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junttila MR, Puustinen P, Niemela M, Ahola R, Arnold H, Bottzauw T et al. (2007). CIP2A inhibits PP2A in human malignancies. Cell 130: 51–62.

    Article  CAS  PubMed  Google Scholar 

  • Kallunki T, Su B, Tsigelny I, Sluss HK, Derijard B, Moore G et al. (1994). JNK2 contains a specificity-determining region responsible for efficient c-Jun binding and phosphorylation. Genes Dev 8: 2996–3007.

    Article  CAS  PubMed  Google Scholar 

  • Kawagishi J, Kumabe T, Yoshimoto T, Yamamoto T . (1995). Structure, organization, and transcription units of the human alpha-platelet-derived growth factor receptor gene, PDGFRA. Genomics 30: 224–232.

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki H, Schiltz L, Chiu R, Itakura K, Taira K, Nakatani Y et al. (2000). ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature 405: 195–200.

    Article  CAS  PubMed  Google Scholar 

  • Ke H, Harris R, Coloff JL, Jin JY, Leshin B, de Marval PM et al. (2010). The c-Jun NH2-terminal kinase 2 plays a dominant role in human epidermal neoplasia. Cancer Res 70: 3080–3088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemp CJ . (2005). Multistep skin cancer in mice as a model to study the evolution of cancer cells. Semin Cancer Biol 15: 460–473.

    Article  CAS  PubMed  Google Scholar 

  • Khanna A, Bockelman C, Hemmes A, Junttila MR, Wiksten JP, Lundin M et al. (2009). MYC-dependent regulation and prognostic role of CIP2A in gastric cancer. J Natl Cancer Inst 101: 793–805.

    Article  CAS  PubMed  Google Scholar 

  • Khosravi-Far R, White MA, Westwick JK, Solski PA, Chrzanowska-Wodnicka M, Van Aelst L et al. (1996). Oncogenic Ras activation of Raf/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation. Mol Cell Biol 16: 3923–3933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolch W, Heidecker G, Lloyd P, Rapp UR . (1991). Raf-1 protein kinase is required for growth of induced NIH/3T3 cells. Nature 349: 426–428.

    Article  CAS  PubMed  Google Scholar 

  • Krautwald S, Büscher D, Kummer V, Buder S, Baccarini M . (1996). Involvement of the protein tyrosine phosphatase SHP-1 in Ras-mediated activation of the mitogen-activated protein kinase pathway. Mol Cell Biol 16: 5955–5963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF et al. (1994). The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369: 156–160.

    Article  CAS  PubMed  Google Scholar 

  • Land H, Chen AC, Morgenstern JP, Parada LF, Weinberg RA . (1986). Behavior of myc and ras oncogenes in transformation of rat embryo fibroblasts. Mol Cell Biol 6: 1917–1925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livingstone C, Patel G, Jones N . (1995). ATF-2 contains a phosphorylation-dependent transcriptional activation domain. EMBO J 14: 1785–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Bergami P, Kim H, Dewing A, Goydos J, Aaronson S, Ronai Z . (2010). c-Jun regulates phosphoinositide-dependent kinase 1 transcription: implication for Akt and protein kinase C activities and melanoma tumorigenesis. J Biol Chem 285: 903–913.

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M . (2003). RAS oncogenes: the first 30 years. Nat Rev Cancer 3: 459–465.

    Article  CAS  PubMed  Google Scholar 

  • Mansour SJ, Matten WT, Hermann AS, Candia JM, Rong S, Fukasawa K et al. (1994). Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265: 966–970.

    Article  CAS  PubMed  Google Scholar 

  • Martinato F, Cesaroni M, Amati B, Guccione E . (2008). Analysis of Myc-induced histone modifications on target chromatin. PLoS One 3: e3650.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mei Y, Yuan Z, Song B, Li D, Ma C, Hu C et al. (2008). Activating transcription factor 3 up-regulated by c-Jun NH(2)-terminal kinase/c-Jun contributes to apoptosis induced by potassium deprivation in cerebellar granule neurons. Neuroscience 151: 771–779.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen C, Thastrup J, Bottzauw T, Jaattela M, Kallunki T . (2007). c-Jun NH2-terminal kinase 2 is required for Ras transformation independently of activator protein 1. Cancer Res 67: 178–185.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KH, Gredsted L, Broach JR, Willumsen BM . (2001). Sensitivity of wild type and mutant ras alleles to Ras specific exchange factors: identification of factor specific requirements. Oncogene 20: 2091–2100.

    Article  CAS  PubMed  Google Scholar 

  • Noguchi K, Kitanaka C, Yamana H, Kokubu A, Mochizuki T, Kuchino Y . (1999). Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase. J Biol Chem 274: 32580–32587.

    Article  CAS  PubMed  Google Scholar 

  • Ovaska K, Laakso M, Haapa-Paananen S, Louhimo R, Chen P, Aittomäki V et al. (2010). Large-scale data integration framework provides a comprehensive view on glioblastoma multiforme. Genome Med 2: 65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearn L, Fisher J, Burnett AK, Darley RL . (2007). The role of PKC and PDK1 in monocyte lineage specification by Ras. Blood 109: 4461–4469.

    Article  CAS  PubMed  Google Scholar 

  • Perez S, Vial E, van Dam H, Castellazzi M . (2001). Transcription factor ATF3 partially transforms chick embryo fibroblasts by promoting growth factor-independent proliferation. Oncogene 20: 1135–1141.

    Article  CAS  PubMed  Google Scholar 

  • Potapova O, Gorospe M, Bost F, Dean NM, Gaarde WA, Mercola D et al. (2000). c-Jun N-terminal kinase is essential for growth of human T98G glioblastoma cells. J Biol Chem 275: 24767–24775.

    Article  CAS  PubMed  Google Scholar 

  • Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ et al. (1995). Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 270: 7420–7426.

    Article  CAS  PubMed  Google Scholar 

  • Schimanski CC, Zimmermann T, Schmidtmann I, Gockel I, Lang H, Galle PR et al. (2010). K-Ras mutation status correlates with the expression of VEGFR1, VEGFR2, and PDGFRalpha in colorectal cancer. Int J Colorectal Dis 25: 181–186.

    Article  PubMed  Google Scholar 

  • Sears R, Leone G, DeGregori J, Nevins JR . (1999). Ras enhances Myc protein stability. Mol Cell 3: 169–179.

    Article  CAS  PubMed  Google Scholar 

  • Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR . (2000). Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14: 2501–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Luke CT, Dower NA, Stone JC, Lorenzo PS . (2010). RasGRP1 is essential for ras activation by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate in epidermal keratinocytes. J Biol Chem 285: 15724–15730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smeal T, Binetruy B, Mercola DA, Birrer M, Karin M . (1991). Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature 354: 494–496.

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Hua B, Adachi S, Guney I, Kawauchi J, Morioka M et al. (2005). Stress response gene ATF3 is a target of c-myc in serum-induced cell proliferation. EMBO J 24: 2590–2601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teruel T, Valverde AM, Navarro P, Benito M, Lorenzo M . (1998). Inhibition of PI 3-kinase and RAS blocks IGF-I and insulin-induced uncoupling protein 1 gene expression in brown adipocytes. J Cell Physiol 176: 99–109.

    Article  CAS  PubMed  Google Scholar 

  • Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A et al. (2000). Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288: 870–874.

    Article  CAS  PubMed  Google Scholar 

  • Troppmair J, Bruder JT, Munoz H, Lloyd PA, Kyriakis J, Banerjee P et al. (1994). Mitogen-activated protein kinase/extracellular signal-regulated protein kinase activation by oncogenes, serum, and 12-O-tetradecanoylphorbol-13-acetate requires Raf and is necessary for transformation. J Biol Chem 269: 7030–7035.

    CAS  PubMed  Google Scholar 

  • Wang A, Arantes S, Yan L, Kiguchi K, McArthur MJ, Sahin A et al. (2008). The transcription factor ATF3 acts as an oncogene in mouse mammary tumorigenesis. BMC Cancer 8: 268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao D, Brownlee M . (2010). Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes 59: 249–255.

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Dewille JW, Hai T . (2008). A potential dichotomous role of ATF3, an adaptive-response gene, in cancer development. Oncogene 27: 2118–2127.

    Article  CAS  PubMed  Google Scholar 

  • Zeller KI, Jegga AG, Aronow BJ, O'Donnell KA, Dang CV . (2003). An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol 4: R69.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Danish Cancer Society (TK, MJ), the Danish Medical Research Council (TK), Ellen and Aage Fausbøll Helsefond (TK), the Danish National Research Foundation (MJ), Danish Cancer Research Foundation (CE), the Novo Nordisk Foundation (CE), the Academy of Finland (JW, RL, SH), Competetive Research Funding of the Pirkanmaa Hospital District (JW, AK), the Finnish Cancer Society (JW, SH) and the Finnish Cancer Organizations (RL) and the Finnish Microarray and Sequencing Centre at Turku Centre for Biotechnology. We additionally thank Dr G Nolan for the pB-puro and pB-hygro constructs, Dr H Land for the c-Myc pB-puro construct, Dr S Kitajima for the ATF3 reporter constructs and Dr T Hai for the ATF3 construct. We are thankful for KG Henriksen and P Rammer for excellent assistance and LB Larsen and L Jørgensen for the in vivo tumorigenicity assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Kallunki.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathiasen, D., Egebjerg, C., Andersen, S. et al. Identification of a c-Jun N-terminal kinase-2-dependent signal amplification cascade that regulates c-Myc levels in ras transformation. Oncogene 31, 390–401 (2012). https://doi.org/10.1038/onc.2011.230

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.230

Keywords

This article is cited by

Search

Quick links