Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HIPK2 phosphorylates ΔNp63α and promotes its degradation in response to DNA damage

Abstract

Homeodomain-interacting protein kinase 2 (HIPK2) is an emerging player in cell response to genotoxic agents that senses damage intensity and contributes to the cell's choice between cell cycle arrest and apoptosis. Phosphorylation of p53 at S46, an apoptosis-specific p53 posttranslational modification, is the most characterized HIPK2 function in response to lethal doses of ultraviolet (UV), ionizing radiation or different anticancer drugs, such as cisplatin, roscovitine and doxorubicin (DOX). Indeed, like p53, HIPK2 has been shown to contribute to the effectiveness of these treatments. Interestingly, p53-independent mechanisms of HIPK2-induced apoptosis were described for UV and tumor growth factor-β treatments; however, it is unknown whether these mechanisms are relevant for the responses to anticancer drugs. Because of the importance of the so-called ‘p53-independent apoptosis and drug response’ in human cancer chemotherapy, we asked whether p53-independent factor(s) might be involved in HIPK2-mediated chemosensitivity. Here, we show that HIPK2 depletion by RNA interference induces resistance to different anticancer drugs even in p53-null cells, suggesting the involvement of HIPK2 targets other than p53 in response to chemotherapy. In particular, we found that HIPK2 phosphorylates and promotes proteasomal degradation of ΔNp63α, a prosurvival ΔN isoform of the p53 family member, p63. Indeed, effective cell response to different genotoxic agents was shown to require phosphorylation-induced proteasomal degradation of ΔNp63α. In DOX-treated cells, we show that HIPK2 depletion interferes with ΔNp63α degradation, and expression of a HIPK2-resistant ΔNp63α-Δ390 mutant induces chemoresistance. We identify T397 as the ΔNp63α residue phosphorylated by HIPK2, and show that the non-phosphorylatable ΔNp63α-T397A mutant is not degraded in the face of either HIPK2 overexpression or DOX treatment. These results indicate ΔNp63α as a novel target of HIPK2 in response to genotoxic drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

CDDP:

cisplatin

Ctr:

control

DDR:

DNA damage response

DOX:

doxorubicin

eGST:

eukaryotic-Glutathione S Transferase

HIPK2:

homeodomain-interacting protein kinase 2

TCE:

total cell extract

References

  • Barbieri CE, Perez CA, Johnson KN, Ely KA, Billheimer D, Pietenpol JA . (2005). IGFBP-3 is a direct target of transcriptional regulation by DeltaNp63alpha in squamous epithelium. Cancer Res 65: 2314–2320.

    Article  CAS  PubMed  Google Scholar 

  • Bon G, Di Carlo SE, Folgiero V, Avetrani P, Lazzari C, D'Orazi G et al. (2009). Negative regulation of beta4 integrin transcription by homeodomain-interacting protein kinase 2 and p53 impairs tumor progression. Cancer Res 691: 5978–5986.

    Article  Google Scholar 

  • Bracaglia G, Conca B, Bergo A, Rusconi L, Zhou Z, Greenberg ME et al. (2009). Methyl-CpG-binding protein 2 is phosphorylated by homeodomain-interacting protein kinase 2 and contributes to apoptosis. EMBO Rep 10: 1327–1333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  • Calzado MA, De La Vega L, Munoz E, Schmitz ML . (2009). From top to bottom: the two faces of HIPK2 for regulation of the hypoxic response. Cell Cycle 8: 1659–1664.

    Article  CAS  PubMed  Google Scholar 

  • Calzado MA, Renner F, Roscic A, Schmitz ML . (2007). HIPK2: a versatile switchboard regulating the transcription machinery and cell death. Cell Cycle 15: 139–143.

    Article  Google Scholar 

  • Carroll DK, Carroll JS, Leong CO, Cheng F, Brown M, Mills AA et al. (2006). p63 regulates an adhesion programme and cell survival in epithelial cells. Nat Cell Biol 8: 551–561.

    Article  CAS  PubMed  Google Scholar 

  • Cecchinelli B, Lavra L, Rinaldo C, Iacovelli S, Gurtner A, Gasbarri A et al. (2006a). Repression of the antiapoptotic molecule galectin-3 by homeodomain-interacting protein kinase 2-activated p53 is required for p53-induced apoptosis. Mol Cell Biol 26: 4746–4757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cecchinelli B, Porrello A, Lazzari C, Gradi A, Bossi G, D'Angelo M et al. (2006b). Ser58 of mouse p53 is the homologue of human Ser46 and is phosphorylated by HIPK2 in apoptosis. Cell Death Differ 13: 1994–1997.

    Article  CAS  PubMed  Google Scholar 

  • Ciardiello F, McGeady ML, Kim N, Basolo F, Hynes N, Langton BC et al. (1990). Transforming growth factor-alpha expression is enhanced in human mammary epithelial cells transformed by an activated c-Ha-ras protooncogene but not by the c-neu protooncogene, and overexpression of the transforming growth factor-alpha complementary DNA leads to transformation. Cell Growth Differ 1: 407–420.

    CAS  PubMed  Google Scholar 

  • Dauth I, Kruger J, Hofmann TG . (2007). Homeodomain-interacting protein kinase 2 is the ionizing radiation-activated p53 serine 46 kinase and is regulated by ATM. Cancer Res 67: 2274–2279.

    Article  CAS  PubMed  Google Scholar 

  • Di Costanzo A, Festa L, Duverger O, Vivo M, Guerrini L, La Mantia G et al. (2009). Homeodomain protein Dlx3 induces phosphorylation-dependent p63 degradation. Cell Cycle 8: 1185–1195.

    Article  CAS  PubMed  Google Scholar 

  • Di Stefano V, Rinaldo C, Sacchi A, Soddu S, D'Orazi G . (2004). Homeodomain-interacting protein kinase-2 activity and p53 phosphorylation are critical events for cisplatin-mediated apoptosis. Cell Res 293: 311–320.

    Article  CAS  Google Scholar 

  • D'Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S et al. (2002). Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 4: 11–19.

    Article  CAS  PubMed  Google Scholar 

  • Du Z, Li J, Wang L, Bian C, Wang Q, Liao L et al. (2010). Overexpression of ΔNp63α induces a stem cell phenotype in MCF7 breast carcinoma cell line through the Notch pathway. Cancer Sci 101: 2417–2424.

    Article  CAS  PubMed  Google Scholar 

  • Fomenkov A, Zangen R, Huang YP, Osada M, Guo Z, Fomenkov T et al. (2004). RACK1 and stratifin target DeltaNp63alpha for a proteasome degradation in head and neck squamous cell carcinoma cells upon DNA damage. Cell Cycle 3: 1285–1295.

    Article  CAS  PubMed  Google Scholar 

  • Galli F, Rossi M, D'Alessandra Y, De Simone M, Lopardo T, Haupt Y et al. (2010). MDM2 and Fbw7 cooperate to induce p63 protein degradation following DNA damage and cell differentiation. J Cell Sci 123: 2423–2433.

    Article  CAS  PubMed  Google Scholar 

  • Gonfloni S, Di Tella L, Caldarola S, Cannata SM, Klinger FG, Di Bartolomeo C et al. (2009). Inhibition of the c-Abl-TAp63 pathway protects mouse oocytes from chemotherapy-induced death. Nat Med 15: 1179–1185.

    Article  CAS  PubMed  Google Scholar 

  • Gresko E, Ritterhoff S, Sevilla-Perez J, Roscic A, Frobius K, Kotevic I et al. (2009). PML tumor suppressor is regulated by HIPK2-mediated phosphorylation in response to DNA damage. Oncogene 28: 698–708.

    Article  CAS  PubMed  Google Scholar 

  • Gresko E, Roscic A, Ritterhoff S, Vichalokovski A, Del Sal G, Schimtz ML . (2006). Autoregulatory control of the p53 response by caspase-mediated processing of HIPK2. EMBO J 25: 1883–1894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hibi K, Trink B, Patturajan M, Westra WH, Caballero OL, Hill DE et al. (2000). AIS is an oncogene amplified in squamous cell carcinoma. Proc Natl Acad Sci USA 97: 5462–5467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann TG, Möller A, Sirma H, Zentgraf H, Taya Y, Dröge W et al. (2002). Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 4: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann TG, Stollberg N, Schmitz ML, Will H . (2003). HIPK2 regulates transforming growth factor-beta-induced c-Jun NH(2)-terminal kinase activation and apoptosis in human hepatoma cells. Cancer Res 63: 8271–8277.

    CAS  PubMed  Google Scholar 

  • Huang Y, Chuang AY, Romano RA, Liégeois NJ, Sinha S, Trink B et al. (2010). Phospho-DeltaNp63alpha/NF-Y protein complex transcriptionally regulates DDIT3 expression in squamous cell carcinoma cells upon cisplatin exposure. Cell Cycle 9: 328–338.

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Sen T, Nagpal J, Upadhyay S, Trink B, Ratovitski E et al. (2008). ATM kinase is a master switch for the Delta Np63 alpha phosphorylation/degradation in human head and neck squamous cell carcinoma cells upon DNA damage. Cell Cycle 7: 2846–2855.

    Article  CAS  PubMed  Google Scholar 

  • Irwin MS, Kaelin WG . (2001). p53 family update: p73 and p63 develop their own identities. Cell Growth Differ 12: 337–349.

    CAS  PubMed  Google Scholar 

  • Kanei-Ishii C, Ninomiya-Tsuji J, Tanikawa J, Nomura T, Ishitani T, Kishida S et al. (2004). Wnt-1 signal induces phosphorylation and degradation of c-Myb protein via TAK1, HIPK2, and NLK. Genes Dev 18: 816–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim EJ, Park JS, Um SJ . (2002). Identification and characterization of HIPK2 interacting with p73 and modulating functions of the p53 family in vivo. J Biol Chem 277: 32020–32028.

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Choi CY, Lee SJ, Conti MA, Kim Y . (1998). Homeodomain-interacting protein kinases, a novel family of co-repressors for homeodomain transcription factors. J Biol Chem 273: 25875–25879.

    Article  CAS  PubMed  Google Scholar 

  • Lanza M, Marinari B, Papoutsaki M, Giustizieri ML, D'Alessandra Y, Chimenti S et al. (2006). Cross-talks in the p53 family: deltaNp63 is an anti-apoptotic target for deltaNp73alpha and p53 gain-of-function mutants. Cell Cycle 5: 1996–2004.

    Article  CAS  PubMed  Google Scholar 

  • Lavra L, Rinaldo C, Ulivieri A, Luciani E, Fidanza P, Giacomelli L et al. (2011). The loss of the p53 activator HIPK2 is responsible for Galectin-3 overexpression in well differentiated thyroid carcinomas. PLoS ONE (in press).

  • Leong CO, Vidnovic N, DeYoung MP, Sgroi D, Ellisen LW . (2007). The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J Clin Invest 117: 1370–1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Lin S, Wang X, Lian G, Lu Z, Guo H et al. (2009). Axin determines cell fate by controlling the p53 activation threshold after DNA damage. Nat Cell Biol 11: 1128–1134.

    Article  CAS  PubMed  Google Scholar 

  • Li XL, Arai Y, Harada H, Shima Y, Yoshida H, Rokudai S et al. (2007). Mutations of the HIPK2 gene in acute myeloid leukemia and myelodysplastic syndrome impair AML1- and p53-mediated transcription. Oncogene 26: 7231–7239.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhou Z, Chen C . (2008). WW domain-containing E3 ubiquitin protein ligase 1 targets p63 transcription factor for ubiquitin-mediated proteasomal degradation and regulates apoptosis. Cell Death Differ 15: 1941–1951.

    Article  CAS  PubMed  Google Scholar 

  • Liefer KM, Koster MI, Wang XJ, Yang A, McKeon F, Roop DR . (2000). Down-regulation of p63 is required for epidermal UV-B-induced apoptosis. Cancer Res 60: 4016–4020.

    CAS  PubMed  Google Scholar 

  • Lin Z, Liu M, Li Z, Kim C, Lee E, Kim I . (2006). DeltaNp63 protein expression in uterine cervical and endometrial cancers. J Cancer Res Clin Oncol 32: 811–816.

    Article  Google Scholar 

  • MacPartlin M, Zeng SX, Lu H . (2008). Phosphorylation and stabilization of TAp63gamma by IkappaB kinase-beta. J Biol Chem 283: 15754–15761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moll UM, Slade N . (2004). p63 and p73: roles in development and tumor formation. Mol Cancer Res 2: 371–386.

    CAS  PubMed  Google Scholar 

  • Muller M, Elisa Schleithoff S, Stremmel W, Melino G, Krammer PH, Schilling T . (2006). One, two, three—p53, p63, p73 and chemosensitivity. Drug Res Updates 9: 288–306.

    Article  Google Scholar 

  • Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T et al. (2000). p53-AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102: 849–862.

    Article  CAS  PubMed  Google Scholar 

  • Papoutsaki M, Moretti F, Lanza M, Marinari B, Sartorelli V, Guerrini L et al. (2005). A p38-dependent pathway regulates DeltaNp63 DNA binding to p53-dependent promoters in UV-induced apoptosis of keratinocytes. Oncogene 24: 6970–6975.

    Article  CAS  PubMed  Google Scholar 

  • Parsa R, Yang A, McKeon F, Green H . (1999). Association of p63 with proliferative potential in normal and neoplastic human keratinocytes. J Invest Dermatol 113: 1099–1105.

    Article  CAS  PubMed  Google Scholar 

  • Pierantoni GM, Rinaldo C, Mottolese M, Di Benedetto A, Esposito F, Soddu S et al. (2007). High-mobility group A1 inhibits p53 by cytoplasmic relocalization of its proapoptotic activator HIPK2. J Clin Invest 17: 693–702.

    Article  Google Scholar 

  • Puca R, Nardinocchi L, Gal H, Rechavi G, Amariglio N, Domany E et al. (2008). Reversible dysfunction of wild-type p53 following homeodomain-interacting protein kinase-2 knockdown. Cancer Res 68: 3707–3714.

    Article  CAS  PubMed  Google Scholar 

  • Puca R, Nardinocchi L, Givol D, D'Orazi G . (2010). Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells. Oncogene 29: 4378–4387.

    Article  CAS  PubMed  Google Scholar 

  • Rinaldo C, Prodosmo A, Mancini F, Iacovelli S, Sacchi A, Moretti F et al. (2007a). MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis. Mol Cell 25: 739–750.

    Article  CAS  PubMed  Google Scholar 

  • Rinaldo C, Prodosmo A, Siepi F, Soddu S . (2007b). HIPK2: a multitalented partner for transcription factors in DNA damage response and development. Biochem Cell Biol 85: 411–418.

    Article  CAS  PubMed  Google Scholar 

  • Rocco JW, Leong CO, Kuperwasser N, DeYoung MP, Ellisen LW . (2006). p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 9: 45–56.

    Article  CAS  PubMed  Google Scholar 

  • Rossi M, Aqeilan RI, Neale M, Candi E, Salomoni P, Knight RA et al. (2006). The E3 ubiquitin ligase Itch controls the protein stability of p63. Proc Natl Acad Sci USA 103: 12753–12758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senoo M, Tsuchiya I, Matsumura Y, Mori T, Saito Y, Kato H et al. (2001). Transcriptional dysregulation of the p73L/p63/p51/p40/KET gene in human squamous cell carcinomas: expression of Delta Np73L, a novel dominant-negative isoform, and loss of expression of the potential tumour suppressor p51. Br J Cancer 84: 1235–1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilgelm A, El-Rifai W, Zaika A . (2008). Therapeutic prospects for p73 and p63: rising from the shadow of p53. Drug Resist Updat 11: 152–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Guo L, Rueda BR, Tilly JL . (2010). Cables1 protects p63 from proteasomal degradation to ensure deletion of cells after genotoxic stress. EMBO Rep 11: 633–639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wee HJ, Voon DC, Bae SC, Ito Y . (2008). PEBP2-beta/CBF-beta-dependent phosphorylation of RUNX1 and p300 by HIPK2: implications for leukemogenesis. Blood 112: 3777–3787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wesierska-Gadek J, Schmitz ML, Ranftler C . (2007). Roscovitine-activated HIP2 kinase induces phosphorylation of wt p53 at Ser-46 in human MCF-7 breast cancer cells. J Cell Biochem 100: 865–874.

    Article  CAS  PubMed  Google Scholar 

  • Westfall MD, Joyner AS, Barbieri CE, Livingstone M, Pietenpol JA . (2005). Ultraviolet radiation induces phosphorylation and ubiquitin-mediated degradation of Delta Np63alpha. Cell Cycle 4: 710–716.

    Article  CAS  PubMed  Google Scholar 

  • Winter M, Sombroek D, Dauth I, Moehlenbrink J, Scheuermann K, Crone J et al. (2008). Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR. Nat Cell Biol 10: 812–824.

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Osada M, Guo Z, Fomenkov A, Begum S, Zhao M et al. (2005). DeltaNp63alpha up-regulates the Hsp70 gene in human cancer. Cancer Res 65: 758–766.

    CAS  PubMed  Google Scholar 

  • Yamada D, Pérez-Torrado R, Filion G, Caly M, Jammart B, Devignot V et al. (2009). The human protein kinase HIPK2 phosphorylates and downregulates the methyl-binding transcription factor ZBTB4. Oncogene 28: 2535–2544.

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V et al. (1998). p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 2: 305–316.

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Zhu Z, Kapranov P, McKeon F, Church GM, Gingeras TR et al. (2006). Relationships between p63 binding, DNA sequence, transcription activity, and biological function in human cells. Mol Cell 24: 593–602.

    Article  CAS  PubMed  Google Scholar 

  • Zangen R, Ratovitski E, Sidransky D . (2005). DeltaNp63alpha levels correlate with clinical tumor response to cisplatin. Cell Cycle 4: 1313–1315.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Yoshimatsu Y, Hildebrand J, Frisch SM, Goodman RH . (2003). Homeodomain interacting protein kinase 2 promotes apoptosis by downregulating the transcriptional corepressor CtBP. Cell 115: 177–186.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all people cited in the text for their kind gifts of cells and reagents and to Dr F Socciarelli for technical support. This work was supported by Ministero della Salute and ‘New Idea Award’ form the Scientific Direction of the Regina Elena Cancer Institute to SS. FS was a recipient of a fellowship from Fondazione Italiana per la Ricerca sul Cancro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Soddu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazzari, C., Prodosmo, A., Siepi, F. et al. HIPK2 phosphorylates ΔNp63α and promotes its degradation in response to DNA damage. Oncogene 30, 4802–4813 (2011). https://doi.org/10.1038/onc.2011.182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.182

Keywords

This article is cited by

Search

Quick links