Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Selective targeting of activating and inhibitory Smads by distinct WWP2 ubiquitin ligase isoforms differentially modulates TGFβ signalling and EMT

Abstract

Ubiquitin-dependent mechanisms have emerged as essential regulatory elements controlling cellular levels of Smads and TGFβ-dependent biological outputs such as epithelial–mesenchymal transition (EMT). In this study, we identify a HECT E3 ubiquitin ligase known as WWP2 (Full-length WWP2-FL), together with two WWP2 isoforms (N-terminal, WWP2-N; C-terminal WWP2-C), as novel Smad-binding partners. We show that WWP2-FL interacts exclusively with Smad2, Smad3 and Smad7 in the TGFβ pathway. Interestingly, the WWP2-N isoform interacts with Smad2 and Smad3, whereas WWP2-C interacts only with Smad7. In addition, WWP2-FL and WWP2-C have a preference for Smad7 based on protein turnover and ubiquitination studies. Unexpectedly, we also find that WWP2-N, which lacks the HECT ubiquitin ligase domain, can also interact with WWP2-FL in a TGFβ-regulated manner and activate endogenous WWP2 ubiquitin ligase activity causing degradation of unstimulated Smad2 and Smad3. Consistent with our protein interaction data, overexpression and knockdown approaches reveal that WWP2 isoforms differentially modulate TGFβ-dependent transcription and EMT. Finally, we show that selective disruption of WWP2 interactions with inhibitory Smad7 can stabilise Smad7 protein levels and prevent TGFβ-induced EMT. Collectively, our data suggest that WWP2-N can stimulate WWP2-FL leading to increased activity against unstimulated Smad2 and Smad3, and that Smad7 is a preferred substrate for WWP2-FL and WWP2-C following prolonged TGFβ stimulation. Significantly, this is the first report of an interdependent biological role for distinct HECT E3 ubiquitin ligase isoforms, and highlights an entirely novel regulatory paradigm that selectively limits the level of inhibitory and activating Smads.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Atsumi T, Miwa Y, Kimata K, Ikawa Y . (1990). A chondrogenic cell line derived from a differentiating culture of AT805 teratocarcinoma cells. Cell Differ Dev 30: 109–116.

    Article  CAS  Google Scholar 

  • Bernassola F, Karin M, Ciechanover A, Melino G . (2008). The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell 14: 10–21.

    Article  CAS  Google Scholar 

  • Bonni S, Wang HR, Causing CG, Kavsak P, Stroschein SL, Luo K et al. (2001). TGF-beta induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation. Nat Cell Biol 3: 587–595.

    Article  CAS  Google Scholar 

  • Danckwardt S, Hentze MW, Kulozik AE . (2008). 3′ end mRNA processing: molecular mechanisms and implications for health and disease. EMBO Journal 27: 482–498.

    Article  CAS  Google Scholar 

  • Ellenrieder V, Hendler SF, Boeck W, Seufferlein WT, Menke A, Ruhland C et al. (2001). Transforming growth factor beta1 treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Res 61: 4222–4228.

    CAS  PubMed  Google Scholar 

  • Flasza M, Gorman P, Roylance R, Canfield AE, Baron M . (2002). Alternative splicing determines the domain structure of WWP1, a Nedd4 family protein. Biochem Biophys Res Commun 290: 431–437.

    Article  CAS  Google Scholar 

  • Foot NJ, Dalton HE, Shearwin-Whyatt LM, Dorstyn L, Tan SS, Yang B et al. (2008). Regulation of the divalent metal ion transporter DMT1 and iron homeostasis by a ubiquitin-dependent mechanism involving Ndfips and WWP2. Blood 112: 4268–4275.

    Article  CAS  Google Scholar 

  • Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH et al. (2000). Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 6: 1365–1375.

    Article  CAS  Google Scholar 

  • Hata A, Lo RS, Wotton D, Lagna G, Massagué J . (1997). Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4. Nature 388: 82–87.

    Article  CAS  Google Scholar 

  • Heldin CH, Landström M, Moustakas A . (2009). Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol 21: 166–176.

    Article  CAS  Google Scholar 

  • Hong S, Lee C, Kim SJ . (2007). Smad7 sensitizes tumor necrosis factor induced apoptosis through the inhibition of anti-apoptotic gene expression by suppressing activation of the nuclear factor-kappaB pathway. Cancer Res 67: 9577–9583.

    Article  CAS  Google Scholar 

  • Javelaud D, Mohammad KS, McKenna CR, Fournier P, Luciani F, Niewolna M et al. (2007). Stable expression of Smad7 in human melanoma cells impairs bone metastasis. Cancer Res 67: 2317–2324.

    Article  CAS  Google Scholar 

  • Levy L, Hill CS . (2005). Smad4 dependency defines two classes of transforming growth factor-β target genes and distinguishes TGF-β-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses. Mol Cell Biol 25: 8108–8125.

    Article  CAS  Google Scholar 

  • Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A et al. (2008). Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’ dynamics and signaling. PLoS ONE 3: e1487.

    Article  Google Scholar 

  • Li H, Zhang Z, Wang B, Zhang J, Zhao Y, Jin Y . (2007). Wwp2-mediated ubiquitination of the RNA polymerase II large subunit in mouse embryonic pluripotent stem cells. Mol Cell Biol 27: 5296–5305.

    Article  CAS  Google Scholar 

  • Lönn P, Morén A, Raja E, Dahl M, Moustakas A . (2009). Regulating the stability of TGFbeta receptors and Smads. Cell Res 19: 21–35.

    Article  Google Scholar 

  • Lu PJ, Zhou XZ, Shen M, Lu KP . (1999). Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 283: 1325–1328.

    Article  CAS  Google Scholar 

  • Lutz CS . (2008). Alternative polyadenylation: A twist on mRNA 3′ end formation. ACS Chem Biol 3: 609–617.

    Article  CAS  Google Scholar 

  • McDonald FJ, Western AH, McNeil JD, Thomas BC, Olson DR, Snyder PM . (2002). Ubiquitin-protein ligase WWP2 binds to and downregulates the epithelial Na(+) channel. Am J Physiol Renal Physiol 283: F431–F436.

    Article  CAS  Google Scholar 

  • Mund T, Pelham HR . (2009). Control of the activity of WW-HECT domain E3 ubiquitin ligases by NDFIP proteins. EMBO Rep 10: 501–507.

    Article  CAS  Google Scholar 

  • Murray-Zmijewski F, Lane DP, Bourdon JC . (2006). p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ 13: 962–972.

    Article  CAS  Google Scholar 

  • Nilsen TW, Graveley BR . (2010). Expansion of the eukaryotic proteome by alternative splicing. Nature 463: 457–463.

    Article  CAS  Google Scholar 

  • Pirozzi G, McConnell SJ, Uveges AJ, Carter JM, Sparks AB, Kay BK et al. (1997). Identification of novel human WW domain-containing proteins by cloning of ligand targets. J Biol Chem 272: 14611–14616.

    Article  CAS  Google Scholar 

  • Raikwar NS, Thomas CP . (2008). Nedd4-2 isoforms ubiquitinate individual epithelial sodium channel subunits and reduce surface expression and function of the epithelial sodium channel. Am J Physiol Renal Physiol 294: 1157–1165.

    Article  Google Scholar 

  • Tazi J, Bakkour N, Stamm S . (2009). Alternative splicing and disease. Biochimica et Biophysica Acta 1792: 14–26.

    Article  CAS  Google Scholar 

  • Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A . (2005). TGF-beta and the Smad signalling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 16: 1987–2002.

    Article  CAS  Google Scholar 

  • Wicks S, Haros K, Maillard M, Song L, Cohen RE, ten Dijke P et al. (2005). The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGFβ signalling. Oncogene 24: 8080–8084.

    Article  CAS  Google Scholar 

  • Wiesner S, Ogunjimi AA, Wang HR, Rotin D, Sicheri F, Wrana JL et al. (2007). Autoinhibition of the HECT-type ubiquitin ligase Smurf2 through its C2 domain. Cell 130: 651–662.

    Article  CAS  Google Scholar 

  • Xu H, Wang W, Li C, Yu H, Yang A, Wang B et al. (2009a). WWP2 promotes degradation of transcription factor OCT4 in human embryonic stem cells. Cell Res 19: 561–573.

    Article  CAS  Google Scholar 

  • Xu HM, Liao B, Zhang QJ, Wang BB, Li H, Zhong XM et al. (2004). Wwp2, an E3 ubiquitin ligase that targets transcription factor Oct-4 for ubiquitination. J Biol Chem 279: 23495–23503.

    Article  CAS  Google Scholar 

  • Xu J, Lamouille S, Derynck R . (2009b). TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19: 156–172.

    Article  CAS  Google Scholar 

  • Zavadil J, Böttinger EP . (2005). TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24: 5764–5774.

    Article  CAS  Google Scholar 

  • Zhang S, Ekman M, Thakur N, Bu S, Davoodpour P, Grimsby S et al. (2006). TGFbeta-induced activation of ATM and p53 mediates apoptosis in a Smad7-dependent manner. Cell Cycle 5: 2787–2795.

    Article  CAS  Google Scholar 

  • Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH . (1999). A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400: 687–693.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Fiona McDonald, Caroline Hill, and Hans Clevers for generously providing cells/plasmids, and Ian Clark and Tracey Swingler for generously providing ATDC5 cDNA samples. This work was supported by the Association for International Research (AICR), with additional funding provided by the BigC Charity, the British Skin Foundation and the Dunhill Medical Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Chantry.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website ()

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soond, S., Chantry, A. Selective targeting of activating and inhibitory Smads by distinct WWP2 ubiquitin ligase isoforms differentially modulates TGFβ signalling and EMT. Oncogene 30, 2451–2462 (2011). https://doi.org/10.1038/onc.2010.617

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.617

Keywords

This article is cited by

Search

Quick links