Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PTPH1 cooperates with vitamin D receptor to stimulate breast cancer growth through their mutual stabilization

Abstract

Tyrosine phosphorylation is tightly regulated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), and has a critical role in malignant transformation and progression. Although PTKs have a well-established role in regulating breast cancer growth, contribution of PTPs remains mostly unknown. Here, we report that the tyrosine phosphatase PTPH1 stimulates breast cancer growth through regulating vitamin D receptor (VDR) expression. PTPH1 was shown to be overexpressed in 49% of primary breast cancer and levels of its protein expression positively correlate with the clinic metastasis, suggesting its oncogenic activity. Indeed, PTPH1 promotes breast cancer growth by a mechanism independent of its phosphatase activity, but dependent of its stimulatory effect on the nuclear receptor VDR protein expression and depletion of induced VDR abolishes the PTPH1 oncogenic activity. Additional analyses showed that PTPH1 binds VDR and increases its cytoplasmic accumulation, leading to their mutual stabilization and stable expression of a nuclear localization-deficient VDR abolishes the growth-inhibitory activity of the receptor independent of 1,25-dihydroxyvitamin D3. These results reveal a new paradigm in which a PTP may stimulate breast cancer growth through increasing cytoplasmic translocation of a nuclear receptor, leading to their mutual stabilization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Ardini E, Agresti R, Tagliabue E, Creco M, Aiello P, Yang L et al. (2000). Expression of protein tyrosine phosphatase alpha (RPTPα) in human breast cancer correlates with low tumor grade, and inhibiits tumor cell growth in vitro and in vivo. Oncogene 19: 4979–4987.

    Article  CAS  PubMed  Google Scholar 

  • Arias-Romero LE, Saha S, Villamar-Cruz O, Yip S, Ethier SP, Zhang Z et al. (2009). Activation of Src by protein tyrosine phosphatase 1B is required for ErB2 transformation of human breast epithelial cells. Cancer Res 69: 4582–4588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentires-Alj M, Neel BG . (2007). Protein-tyrosine phosphatase 1B is required for HER2/Neu-induced breast cancer. Cancer Res 67: 2420–2424.

    Article  CAS  PubMed  Google Scholar 

  • Brown-Shimer S, Johnson KA, Hill DE, Bruskin AM . (1992). Effect of protein tyrosine phosphatase 1B expression on transformation by the human neu oncogene. Cancer Res 52: 478–482.

    CAS  PubMed  Google Scholar 

  • Bulavin DV, Phillips C, Nannenga B, Timofeev O, Donehower A, Anderson CM et al. (2004). Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16Ink4a-p19Arf pathway. Nat Genet 36: 343–350.

    Article  CAS  PubMed  Google Scholar 

  • Campbell M, Gombart AF, Kwok SH, Park S, Koeffler HP . (2000). The anti-proliferative effects of 1α,25(OH)2D3 on breast and prostate cancer cells are associated with induction of BRC A1 gene expression. Oncogene 19: 5091–5097.

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Waxman DJ . (1994). Role of cellular glutathione and glutathione-S-transferase in the expression of alkylating agent cytotoxicity in human breast cancer cells. Biochem Pharmacol 47: 1079–1087.

    Article  CAS  PubMed  Google Scholar 

  • Conzen SD . (2008). Nuclear receptors and breast cancer. Mol Endocrinol 22: 2215–2228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garay E, Donnelly R, Wang X, Studzinski GP . (2007). Resistance to 1,25D-induced differentiation in human acute myeloid leukemia HL60-40AF cells is associated with reduced transcriptional activity and nucelar localization of the vitamin D receptor. J Cell Physiol 213: 816–825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou SW, Zhi H, Pohl N, Loesch M, Qi X, Li R et al. (2010). PTPH1 dephosphorylates and cooperates with p38γ MAPK to increases Ras oncogenesis through PDZ-mediated interaction. Cancer Res 70: 2901–2910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Shevde NK, Pike JW . (2005). 1,25-dihydroxyvitamin D3 stimulates cyclinc vitamin D receptor/retinoid X receptor DNA-binding, co-activator recruitment, and histone acetylation in intact osteoblasts. J Bone Min Res 20: 305–317.

    Article  CAS  Google Scholar 

  • Korkola JE, DeVries S, Fridlyand J, Hwang ES, Estep AL, Chen YY et al. (2003). Differentiation of lobular versus ductal breast carcinomas by expression microarray analysis. Cancer Res 63: 7167–7175.

    CAS  PubMed  Google Scholar 

  • Kure S, Nosho K, Baba Y, Irahara N, Shima K, Ng K et al. (2009). Vitamin D receptor expression is associated with PIK3CA and KRAS mutations in colorectal cancer. Cancer Epidemiol Biomarkers Prev 18: 2765–2772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange CR, Shen T, Horwitz KB . (2000). The phosphorylation of human progesterone receptor B at serine 294 by p42MAPK signals its degradation. Pro Natl Acad Sci USA 97: 1032–1037.

    Article  CAS  Google Scholar 

  • Li QP, Qi X, Pramanik R, Pohl NM, Loesch M, Chen G . (2007). Stress-induced c-Jun-dependent vitamin D receptor (VDR) activation dissects the non-classical VDR pathway from the classical VDR activity. J Biol Chem 282: 1544–1551.

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Chernoff J . (1998). Suppression oncogene-mediated transformation of rat 3Y1 fibroblasts byprotein tyrosine phosphatase 1B requires a functional SH3-ligand. Mol Cell Biol 18: 250–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loesch M, Zhi H, Hou S, Qi X, Li R, Basir Z et al. (2010). p38γ MAPK cooperates with c-Jun in trans-activating matrix metalloproteinase 9. J Biol Chem 285: 15149–15158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Nannenga B, Donehower LA . (2005). PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev 19: 1162–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama R, Aoki F, Toyota M, Sasaki Y, Akashi H, Mita H et al. (2006). Comparative genome analysis identifies the vitamin D receptor gene as a direct target of p53-mediated transcriptional activation. Cancer Res 66: 4574–4583.

    Article  CAS  PubMed  Google Scholar 

  • Menezes RJ, Cheney RT, Husain A, Tretiakova M, Loewen G, Johnson CS et al. (2008). Vitamin D receptor expression in normal, premalignant and malignant human lung tissue. Cancer Epidemiol Biomarkers Prev 17: 1104–1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mhuircheartaigh JN, Curran C, Hennessy E, Kerin MJ . (2006). Prospective matched-pair comparison of outcome after treatment for lobular and ductal breast carcinoma. Br J Surg 95: 827–833.

    Article  Google Scholar 

  • Obrero M, Yu DV, Shapiro DJ . (2002). Estrogen receptor-dependent and estrogen receptor-independent pathways for tamoxifen and 4-hydroxytamoxifen-induced programmed cell death. J Biol Chem 277: 45695–45703.

    Article  CAS  PubMed  Google Scholar 

  • Ostman A, Hellberg C, Bohmer FD . (2006). Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 6: 307–320.

    Article  PubMed  Google Scholar 

  • Prufer K, Barsony J . (2002). Retinoid X receptor dominates the nuclear import and export of the unliganded vitamin D receptor. Mol Endocrinol 16: 1738–1751.

    Article  CAS  PubMed  Google Scholar 

  • Prufer K, Racz A, Lin GC, Barsony J . (2000). Dimerization with retinoid X receptors promotes nuclear localization and subnuclear targeting of vitamin D receptors. J Biol Chem 275: 4114–41123.

    Article  Google Scholar 

  • Prufer K, Schroder C, Hegyi K, Barsony J . (2002). Degradation of RXRs influences sensitivity of rat osteosarcoma cells to the antiproliferative effects of calcitriol. Mol Endocrinol 16: 961–976.

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Borowicz S, Pramanik R, Schultz RM, Han J, Chen G . (2004). Estrogen receptor inhibits c-Jun-dependent stress-induced cell death by binding and modifying c-Jun activity in human breast cancer cells. J Biol Chem 279: 6769–6777.

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Pramank R, Wang J, Schultz RM, Maitra RK, Han J et al. (2002). The p38 and JNK pathways cooperate to trans-activate vitamin D receptor via AP-1 and sensitize human breast cancer cells to vitamin D3-induced growth inhibition. J Biol Chem 277: 25884–25892.

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Tang J, Loesch M, Pohl N, Alkan S, Chen G . (2006). p38γ MAPK integrates signaling cross-talk between Ras and estrogen receptor to increase breast cancer invasion. Cancer Res 66: 7540–7547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Racz A, Barsony J . (1999). Hormone-dependent translacation of vitamin D receptors is linked to transactivation. J Biol Chem 274: 19352–19360.

    Article  CAS  PubMed  Google Scholar 

  • Slamon D, Clark G, Wong S, Levin W, Ulirich A, McGuire W . (1987). Human breast cancer: correlation of relaps and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182.

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Qi X, Mercola D, Han J, Chen G . (2005). Essential role of p38γ in K-Ras transformation independent of phosphorylation. J Biol Chem 280: 23910–23917.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Shen D, Parsons DW, Bardelli A, Sager J, Ptak J et al. (2004). Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science 304: 1164–1166.

    Article  CAS  PubMed  Google Scholar 

  • Ward J, McConnell MJ, Carlile GW, Pandolfi PP, Licht J, Freedman LP . (2001). The acute promylocytic leukemia-associated protein, promyelocytic leukemia zinc finger, regulates 1,25-dihydroxyvitamin D3-induced monocytic differentiation of U937 cells through a physical interaction with vitamin D3 receptor. Blood 98: 3290–3300.

    Article  CAS  PubMed  Google Scholar 

  • Wiener JR, Kerns BJ, Harvey EI . (1994). Over-expression of the protein tyrosine phosphatase PTP1B in human breast cancer. Assoation with p185c-erbB-2 protein expression. J Natl Cancer Inst 86: 372–378.

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Yang J, Venkateswarlu S, Ko T, Brattain MG . (2001). Autocrine TGFβ signaling mediates vitamin D3 analog-induced growth inhibition in breast cells. J Cell Physiol 188: 383–393.

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Tonks NK . (1991). Isolation of a cDNA clone encoding a human protein-tyrosine phosphatase with homology to the cytoskeletal-associated proteins band 4.1-ezrin and talin. Proc Natl Acad Sci USA 88: 5949–5953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasmin R, Willliams RM, Xu M, Noy N . (2005). Nuclear import of the retinoid X receptor, the vitamin D receptor, and their mutual heterodimer. J Biol Chem 280: 40152–40160.

    Article  CAS  PubMed  Google Scholar 

  • Yip SS, Crew AJ, Gee JM, Hui R, Blamey RW, Robertson JF et al (2000). Up-regulation of the protein tyrosine phosphatase SHP–1 in human breast cancer and correlation with GRB2 expression. Int J Cancer 88: 363–368.

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Huang MC . (2000). Overexpression of ErbB2 in cancer and ErbB2-targeting strategies. Oncogene 19: 6115–6121.

    Article  CAS  PubMed  Google Scholar 

  • Zhang SH, Liu J, Kabayashi R, Tonks NK . (1999). Identification of the cell cycle regulator VCP (p97/CDC48) as a substrate of the band 4.1-related protein-tyrosine phosphatase PTPH1. J Biol Chem 274: 17806–17812.

    Article  CAS  PubMed  Google Scholar 

  • Zinser GM, McEleney K, Welsh J . (2003). Characterization of mammary tumor cell lines from wild type and vitamin D3 receptor knockout mice Mol. Cell Endocrinol 200: 67–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from National Institutes of Health (2R01 CA91576), Department of Veterans Affairs (Merit Review), and Cancer Center of Medical College of Wisconsin (GC). We thank Drs Nicholas K Tonks, JoEllen Welsh, Jiahuai Han, Leonard Freedman, David Shapiro, Lawrence A Donehower and Carol E Lange for providing various reagents that made this work possible. We also appreciate Justin Reitsman and Dr Xiaomei Qi for the technical support and Chen's lab members for suggestions and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhi, HY., Hou, SW., Li, RS. et al. PTPH1 cooperates with vitamin D receptor to stimulate breast cancer growth through their mutual stabilization. Oncogene 30, 1706–1715 (2011). https://doi.org/10.1038/onc.2010.543

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.543

Keywords

This article is cited by

Search

Quick links