Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Reversion-inducing cysteine-rich protein with Kazal motifs interferes with epidermal growth factor receptor signaling

Abstract

The reversion-inducing cysteine-rich protein with Kazal motifs (RECK) gene had been isolated as an antagonist to RAS signaling; however, the mechanism of its action is not clear. In this study, the effect of loss of RECK function was assessed in various ways and cell systems. Successive cell cultivation of mouse embryonic fibroblasts (MEFs) according to 3T3 protocol revealed that the germline knockout of RECK confers accelerated cell proliferation and early escape from cellular senescence associated with downregulation of p19Arf, Trp53 and p21Cdkn1a. In contrast, short hairpin RNA-mediated depletion of RECK induced irreversible growth arrest along with several features of the Arf, Trp53 and Cdkn1a-dependent cellular senescence. Within 2 days of RECK depletion, we observed a transient increase in protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) phosphorylation associated with an upregulated expression of cyclin D1, p19Arf, Trp53, p21Cdkn1a and Sprouty 2. On further cultivation, RAS, AKT and ERK activities were then downregulated to a level lower than control, indicating that RECK depletion leads to a negative feedback to RAS signaling and subsequent cellular senescence. In addition, we observed that epidermal growth factor receptor (EGFR) activity was transiently upregulated by RECK depletion in MEFs, and continuously downregulated by RECK overexpression in colon cancer cells. These findings indicate that RECK is a novel modulator of EGFR signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Andratschke NH, Dittmann KH, Mason KA, Fan Z, Liao Z, Komaki R et al. (2004). Epidermal growth factor receptor as a target to improve treatment of lung cancer. Clin Lung Cancer 5: 340–352.

    Article  CAS  Google Scholar 

  • Anker P, Lyautey J, Lefort F, Lederrey C, Stroun M . (1994). Transformation of NIH/3T3 cells and SW 480 cells displaying K-ras mutation. C R Acad Sci III 317: 869–874.

    CAS  PubMed  Google Scholar 

  • Bardeesy N, Sharpless NE . (2006). RAS unplugged: negative feedback and oncogene-induced senescence. Cancer Cell 10: 451–453.

    Article  CAS  Google Scholar 

  • Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. (2006). Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444: 633–637.

    Article  CAS  Google Scholar 

  • Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B et al. (2005). Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436: 660–665.

    Article  CAS  Google Scholar 

  • Chang HC, Cho CY, Hung WC . (2006). Silencing of the metastasis suppressor RECK by RAS oncogene is mediated by DNA methyltransferase 3b-induced promoter methylation. Cancer Res 66: 8413–8420.

    Article  CAS  Google Scholar 

  • Chang HC, Cho CY, Hung WC . (2007). Downregulation of RECK by promoter methylation correlates with lymph node metastasis in non-small cell lung cancer. Cancer Sci 98: 169–173.

    Article  CAS  Google Scholar 

  • Chang HC, Liu LT, Hung WC . (2004). Involvement of histone deacetylation in ras-induced down-regulation of the metastasis suppressor RECK. Cell Signal 16: 675–679.

    Article  CAS  Google Scholar 

  • Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436: 725–730.

    Article  CAS  Google Scholar 

  • Cichowski K, Jacks T . (2001). NF1 tumor suppressor gene function: narrowing the GAP. Cell 104: 593–604.

    Article  CAS  Google Scholar 

  • Clark JC, Thomas DM, Choong PF, Dass CR . (2007). RECK--a newly discovered inhibitor of metastasis with prognostic significance in multiple forms of cancer. Cancer Metastasis Rev 26: 675–683.

    Article  CAS  Google Scholar 

  • Collado M, Serrano M . (2010). Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10: 51–57.

    Article  CAS  Google Scholar 

  • Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, Johannessen CM et al. (2006). A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10: 459–472.

    Article  CAS  Google Scholar 

  • Courtois-Cox S, Jones SL, Cichowski K . (2008). Many roads lead to oncogene-induced senescence. Oncogene 27: 2801–2809.

    Article  CAS  Google Scholar 

  • D'Souza B, Miyamoto A, Weinmaster G . (2008). The many facets of Notch ligands. Oncogene 27: 5148–5167.

    Article  CAS  Google Scholar 

  • Deng C, Zhang P, Harper JW, Elledge SJ, Leder P . (1995). Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82: 675–684.

    Article  CAS  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. (2006). Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444: 638–642.

    Article  CAS  Google Scholar 

  • Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS et al. (2008). MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28: 5369–5380.

    Article  CAS  Google Scholar 

  • Gross I, Bassit B, Benezra M, Licht JD . (2001). Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J Biol Chem 276: 46460–46468.

    Article  CAS  Google Scholar 

  • Hatta M, Matsuzaki T, Morioka Y, Yoshida Y, Noda M . (2009). Density- and serum-dependent regulation of the Reck tumor suppressor in mouse embryo fibroblasts. Cell Signal 21: 1885–1893.

    Article  CAS  Google Scholar 

  • Hsu MC, Chang HC, Hung WC . (2006). HER-2/neu represses the metastasis suppressor RECK via ERK and Sp transcription factors to promote cell invasion. J Biol Chem 281: 4718–4725.

    Article  CAS  Google Scholar 

  • Hu SJ, Ren G, Liu JL, Zhao ZA, Yu YS, Su RW et al. (2008). MicroRNA expression and regulation in mouse uterus during embryo implantation. J Biol Chem 283: 23473–23484.

    Article  CAS  Google Scholar 

  • Itoh T, Ikeda T, Gomi H, Nakao S, Suzuki T, Itohara S . (1997). Unaltered secretion of beta-amyloid precursor protein in gelatinase A (matrix metalloproteinase 2)-deficient mice. J Biol Chem 272: 22389–22392.

    Article  CAS  Google Scholar 

  • Jänne PA . (2005). Ongoing first-line studies of epidermal growth factor receptor tyrosine kinase inhibitors in select patient populations. Semin Oncol 32: S9–S15.

    Article  Google Scholar 

  • Jodele S, Blavier L, Yoon JM, DeClerck YA . (2006). Modifying the soil to affect the seed: role of stromal-derived matrix metalloproteinases in cancer progression. Cancer Metastasis Rev 25: 35–43.

    Article  CAS  Google Scholar 

  • Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA et al. (1997). Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91: 649–659.

    CAS  PubMed  Google Scholar 

  • Kim HJ, Bar-Sagi D . (2004). Modulation of signalling by Sprouty: a developing story. Nat Rev Mol Cell Biol 5: 441–450.

    Article  CAS  Google Scholar 

  • Liu LT, Peng JP, Chang HC, Hung WC . (2003). RECK is a target of Epstein-Barr virus latent membrane protein 1. Oncogene 22: 8263–8270.

    Article  CAS  Google Scholar 

  • Loayza-Puch F, Yoshida Y, Matsuzaki T, Takahashi C, Kitayama H, Noda M . (2010). Hypoxia and RAS-signaling pathways converge on, and cooperatively downregulate, the RECK tumor-suppressor protein through microRNAs. Oncogene 29: 2638–2648.

    Article  CAS  Google Scholar 

  • Long NK, Kato K, Yamashita T, Makita H, Toida M, Hatakeyama D et al. (2008). Hypermethylation of the RECK gene predicts poor prognosis in oral squamous cell carcinomas. Oral Oncol 44: 1052–1058.

    Article  CAS  Google Scholar 

  • Lyons JG, Birkedal-Hansen B, Pierson MC, Whitelock JM, Birkedal-Hansen H . (1993). Interleukin-1 beta and transforming growth factor-alpha/epidermal growth factor induce expression of M(r) 95,000 type IV collagenase/gelatinase and interstitial fibroblast-type collagenase by rat mucosal keratinocytes. J Biol Chem 268: 19143–19151.

    CAS  PubMed  Google Scholar 

  • Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436: 720–724.

    Article  CAS  Google Scholar 

  • Miki T, Takegami Y, Okawa K, Muraguchi T, Noda M, Takahashi C . (2007). The reversion-inducing cysteine-rich protein with Kazal motifs (RECK) interacts with membrane type 1 matrix metalloproteinase and CD13/aminopeptidase N and modulates their endocytic pathways. J Biol Chem 282: 12341–12352.

    Article  CAS  Google Scholar 

  • Miki T, Shamma A, Kitajima S, Takegami Y, Noda M, Nakashima Y et al. (2010). The beta1-integrin-dependent function of RECK in physiologic and tumor angiogenesis. Mol Cancer Res 8: 665–676.

    Article  CAS  Google Scholar 

  • Morioka Y, Monypenny J, Matsuzaki T, Shi S, Alexander DB, Kitayama H et al. (2009). The membrane-anchored metalloproteinase regulator RECK stabilizes focal adhesions and anterior-posterior polarity in fibroblasts. Oncogene 28: 1454–1464.

    Article  CAS  Google Scholar 

  • Muraguchi T, Takegami Y, Ohtsuka T, Kitajima S, Chandana EP, Omura A et al. (2007). RECK modulates Notch signaling during cortical neurogenesis by regulating ADAM10 activity. Nat Neurosci 10: 838–845.

    Article  CAS  Google Scholar 

  • Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA . (2009). MicroRNAs—the micro steering wheel of tumour metastases. Nat Rev Cancer 9: 293–302.

    Article  CAS  Google Scholar 

  • Noda M, Takahashi C . (2007). Recklessness as a hallmark of aggressive cancer. Cancer Sci 98: 1659–1665.

    Article  CAS  Google Scholar 

  • Oh J, Takahashi R, Kondo S, Mizoguchi A, Adachi E, Sasahara RM et al. (2001). The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 107: 789–800.

    Article  CAS  Google Scholar 

  • Oh J, Takahashi R, Adachi E, Kondo S, Kuratomi S, Noma A et al. (2004). Mutations in two matrix metalloproteinase genes, MMP-2 and MT1-MMP, are synthetic lethal in mice. Oncogene 23: 5041–5048.

    Article  CAS  Google Scholar 

  • Omura A, Matsuzaki T, Mio K, Ogura T, Yamamoto M, Fujita A et al. (2009). RECK forms cowbell-shaped dimers and inhibits matrix metalloproteinase-catalyzed cleavage of fibronectin. J Biol Chem 284: 3461–3469.

    Article  CAS  Google Scholar 

  • Rabien A, Burkhardt M, Jung M, Fritzsche F, Ringsdorf M, Schicktanz H et al. (2007). Decreased RECK expression indicating proteolytic imbalance in prostate cancer is associated with higher tumor aggressiveness and risk of prostate-specific antigen relapse after radical prostatectomy. Eur Urol 51: 1259–1266.

    Article  CAS  Google Scholar 

  • Rahmah NN, Sakai K, Nakayama J, Hongo K . (2009). Reversion-inducing cysteine-rich protein with kazal motifs and matrix metalloproteinase-9 are prognostic markers in skull base chordomas. Neurosurg Rev 173: 167–173.

    Google Scholar 

  • Sasahara RM, Takahashi C, Noda M . (1999). Involvement of the Sp1 site in ras-mediated downregulation of the RECK metastasis suppressor gene. Biochem Biophys Res Commun 264: 668–675.

    Article  CAS  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.

    Article  CAS  Google Scholar 

  • Shamma A, Takegami Y, Miki T, Kitajima S, Noda M, Obara T et al. (2009). Rb regulates DNA damage response and cellular senescence through E2F-dependent suppression of N-Ras isoprenylation. Cancer Cell 15: 255–269.

    Article  CAS  Google Scholar 

  • Sharpless NE, Bardeesy N, Lee KH, Carrasco D, Castrillon DH, Aguirre AJ et al. (2001). Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413: 86–91.

    Article  CAS  Google Scholar 

  • Takagi S, Simizu S, Osada H . (2009). RECK negatively regulates matrix metalloproteinase-9 transcription. Cancer Res 69: 1502–1508.

    Article  CAS  Google Scholar 

  • Takahashi C, Sheng Z, Horan TP, Kitayama H, Maki M, Hitomi K et al. (1998). Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc Natl Acad Sci USA 95: 13221–13226.

    Article  CAS  Google Scholar 

  • Takemoto N, Tada M, Hida Y, Asano T, Cheng S, Kuramae T et al. (2007). Low expression of reversion-inducing cysteine-rich protein with Kazal motifs (RECK) indicates a shorter survival after resection in patients with adenocarcinoma of the lung. Lung Cancer 58: 376–383.

    Article  Google Scholar 

  • Takenaka K, Ishikawa S, Kawano Y, Yanagihara K, Miyahara R, Otake Y et al. (2004). Expression of a novel matrix metalloproteinase regulator, RECK, and its clinical significance in resected non-small cell lung cancer. Eur J Cancer 40: 1617–1623.

    Article  CAS  Google Scholar 

  • Takenaka K, Ishikawa S, Yanagihara K, Miyahara R, Hasegawa S, Otake Y et al. (2005). Prognostic significance of reversion-inducing cysteine-rich protein with Kazal motifs expression in resected pathologic stage IIIA N2 non-small-cell lung cancer. Ann Surg Oncol 12: 817–824.

    Article  Google Scholar 

  • Todaro GJ, Green H . (1963). Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol 17: 299–313.

    Article  CAS  Google Scholar 

  • Tsukada T, Tomooka Y, Takai S, Ueda Y, Nishikawa S, Yagi T et al. (1993). Enhanced proliferative potential in culture of cells from p53-deficient mice. Oncogene 8: 3313–3322.

    CAS  PubMed  Google Scholar 

  • Young AP, Schlisio S, Minamishima YA, Zhang Q, Li L, Grisanzio C et al. (2008). VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nat Cell Biol 10: 361–369.

    Article  CAS  Google Scholar 

  • Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W et al. (2008). miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest 88: 1358–1366.

    Article  CAS  Google Scholar 

  • Zolkiewska A . (2008). ADAM proteases: ligand processing and modulation of the Notch pathway. Cell Mol Life Sci 65: 2056–2068.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H Sato and T Muraguchi for critical reading of the paper; T Kamijo, P Leder, N Sharpless, S Itohara, Y Okada and M Seiki for providing the mice; M Seiki, T Sakamoto and T Nakano for providing cells; S Yano and K Matsumoto and S Higashiyama for providing the reagents; C Sugita for supporting mouse transfer; W Hung, K Lee and J Oh for encouragement; H Gu and A Nishimoto for technical assistance; and A Miyazaki and M Suzuki for secretarial assistance. SK thanks the JASSO scholarship for support. This work was supported by a Research Grant from the Princess Takamatsu Cancer Research Fund, Astellas Foundation for Research on Metabolic Disorders, the Takeda Science Foundation and the Japanese Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Takahashi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitajima, S., Miki, T., Takegami, Y. et al. Reversion-inducing cysteine-rich protein with Kazal motifs interferes with epidermal growth factor receptor signaling. Oncogene 30, 737–750 (2011). https://doi.org/10.1038/onc.2010.448

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.448

Keywords

This article is cited by

Search

Quick links