Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RBP-Jκ-dependent Notch signaling enhances retinal pigment epithelial cell proliferation in transgenic mice

Abstract

The Notch signaling pathway is an ubiquitous cell–cell interaction mechanism, which is essential in controlling processes like cell proliferation, cell fate decision, differentiation or stem cell maintenance. Recent data have shown that Notch signaling is RBP-Jκ-dependent in melanocytes, being required for survival of these pigment cells that are responsible for coloration of the skin and hairs in mammals. In addition, Notch is believed to function as an oncogene in melanoma, whereas it is a tumor suppressor in mouse epidermis. In this study, we addressed the implication of the Notch signaling in the development of another population of pigment cells forming the retinal pigment epithelium (RPE) in mammalian eyes. The constitutive activity of Notch in Tyrp1::NotchIC/° transgenic mice enhanced RPE cell proliferation, and the resulting RPE-derived pigmented tumor severely affected the overall eye structure. This RPE cell proliferation is dependent on the presence of the transcription factor RBP-Jκ, as it is rescued in mice lacking RBP-Jκ in the RPE. In conclusion, Notch signaling in the RPE uses the canonical pathway, which is dependent on the transcription factor RBP-Jκ. In addition, it is of importance for RPE development, and constitutive Notch activity leads to hyperproliferation and benign tumors of these pigment cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 5
Figure 4

Similar content being viewed by others

References

  • Adler R, Curcio C, Hicks D, Price D, Wong F . (1999). Cell death in age-related macular degeneration. Mol Vis 5: 31.

    CAS  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, Lake RJ . (1999). Notch signaling: cell fate control and signal integration in development. Science 284: 770–776.

    Article  CAS  Google Scholar 

  • Aubin-Houzelstein G, Djian-Zaouche J, Bernex F, Gadin S, Delmas V, Larue L et al. (2008). Melanoblasts’ proper location and timed differentiation depend on Notch/RBP-J signaling in postnatal hair follicles. J Invest Dermatol 128: 2686–2695.

    CAS  Google Scholar 

  • Aydin IT, Beermann F . (2009). Melanocyte and RPE-specific expression in transgenic mice by mouse MART-1/Melan-A/mlana regulatory sequences. Pigment Cell Melanoma Res 22: 854–856.

    CAS  Google Scholar 

  • Balint K, Xiao M, Pinnix CC, Soma A, Veres I, Juhasz I et al. (2005). Activation of Notch1 signaling is required for beta-catenin-mediated human primary melanoma progression. J Clin Invest 115: 3166–3176.

    CAS  Google Scholar 

  • Bao ZZ, Cepko CL . (1997). The expression and function of Notch pathway genes in the developing rat eye. J Neurosci 17: 1425–1434.

    CAS  Google Scholar 

  • Baumer N, Marquardt T, Stoykova A, Spieler D, Treichel D, Ashery-Padan R et al. (2003). Retinal pigmented epithelium determination requires the redundant activities of Pax2 and Pax6. Development 130: 2903–2915.

    Google Scholar 

  • Besseyrias V, Fiorini E, Strobl LJ, Zimber-Strobl U, Dumortier A, Koch U et al. (2007). Hierarchy of Notch-Delta interactions promoting T cell lineage commitment and maturation. J Exp Med 204: 331–343.

    Google Scholar 

  • Bharti K, Nguyen MT, Skuntz S, Bertuzzi S, Arnheiter H . (2006). The other pigment cell: specification and development of the pigmented epithelium of the vertebrate eye. Pigment Cell Res 19: 380–394.

    Google Scholar 

  • Bodenstein L, Sidman RL . (1987). Growth and development of the mouse retinal pigment epithelium. I. Cell and tissue morphometrics and topography of mitotic activity. Dev Biol 121: 192–204.

    CAS  Google Scholar 

  • Bray SJ . (2006). Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7: 678–689.

    Article  CAS  Google Scholar 

  • Brennan K, Gardner P . (2002). Notching up another pathway. Bioessays 24: 405–410.

    CAS  Google Scholar 

  • Bumsted KM, Barnstable CJ . (2000). Dorsal retinal pigment epithelium differentiates as neural retina in the microphthalmia (mi/mi) mouse. Invest Ophthalmol Vis Sci 41: 903–908.

    CAS  Google Scholar 

  • Cao T, Borden KL, Freemont PS, Etkin LD . (1997). Involvement of the rfp tripartite motif in protein-protein interactions and subcellular distribution. J Cell Sci 110 (Part 14): 1563–1571.

    CAS  Google Scholar 

  • Chow RL, Lang RA . (2001). Early eye development in vertebrates. Annu Rev Cell Dev Biol 17: 255–296.

    CAS  Google Scholar 

  • Dakubo GD, Mazerolle C, Furimsky M, Yu C, St-Jacques B, McMahon AP et al. (2008). Indian hedgehog signaling from endothelial cells is required for sclera and retinal pigment epithelium development in the mouse eye. Dev Biol 320: 242–255.

    CAS  Google Scholar 

  • Das AV, Bhattacharya S, Zhao X, Hegde G, Mallya K, Eudy JD et al. (2008). The canonical Wnt pathway regulates retinal stem cells/progenitors in concert with Notch signaling. Dev Neurosci 30: 389–409.

    CAS  Google Scholar 

  • Defoe DM, Adams LB, Sun J, Wisecarver SN, Levine EM . (2007). Defects in retinal pigment epithelium cell proliferation and retinal attachment in mutant mice with p27(Kip1) gene ablation. Mol Vis 13: 273–286.

    CAS  Google Scholar 

  • Domenga V, Fardoux P, Lacombe P, Monet M, Maciazek J, Krebs LT et al. (2004). Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 18: 2730–2735.

    CAS  Google Scholar 

  • Dotto GP . (2008). Notch tumor suppressor function. Oncogene 27: 5115–5123.

    CAS  Google Scholar 

  • Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD et al. (1991). TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66: 649–661.

    Article  CAS  Google Scholar 

  • Finger PT, McCormick SA, Davidian M, Walsh JB . (1996). Adenocarcinoma of the retinal pigment epithelium: a diagnostic and therapeutic challenge. Graefes Arch Clin Exp Ophthalmol 234 (Suppl 1): S22–S27.

    Google Scholar 

  • Fuhrmann S, Levine EM, Reh TA . (2000). Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick. Development 127: 4599–4609.

    CAS  Google Scholar 

  • Gallahan D, Callahan R . (1997). The mouse mammary tumor associated gene INT3 is a unique member of the NOTCH gene family (NOTCH4). Oncogene 14: 1883–1890.

    CAS  Google Scholar 

  • Garner A . (1970). Tumours of the retinal pigment epithelium. Br J Ophthalmol 54: 715–723.

    CAS  Google Scholar 

  • Gimenez E, Montoliu L . (2001). A simple polymerase chain reaction assay for genotyping the retinal degeneration mutation (Pdeb(rd1)) in FVB/N-derived transgenic mice. Lab Anim 35: 153–156.

    CAS  Google Scholar 

  • Greenwald I . (1998). LIN-12/Notch signaling: lessons from worms and flies. Genes Dev 12: 1751–1762.

    CAS  Google Scholar 

  • Haass NK, Herlyn M . (2005). Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J Investig Dermatol Symp Proc 10: 153–163.

    CAS  Google Scholar 

  • Han H, Tanigaki K, Yamamoto N, Kuroda K, Yoshimoto M, Nakahata T et al. (2002). Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int Immunol 14: 637–645.

    CAS  Google Scholar 

  • Hingorani M, Nischal KK, Davies A, Bentley C, Vivian A, Baker AJ et al. (1999). Ocular abnormalities in Alagille syndrome. Ophthalmology 106: 330–337.

    CAS  Google Scholar 

  • Hoek K, Rimm DL, Williams KR, Zhao H, Ariyan S, Lin A et al. (2004). Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res 64: 5270–5282.

    CAS  Google Scholar 

  • Hsieh JJ, Henkel T, Salmon P, Robey E, Peterson MG, Hayward SD . (1996). Truncated mammalian Notch1 activates CBF1/RBPJk-repressed genes by a mechanism resembling that of Epstein–Barr virus EBNA2. Mol Cell Biol 16: 952–959.

    CAS  Google Scholar 

  • Jackson IJ, Chambers DM, Budd PS, Johnson R . (1991). The tyrosinase-related protein-1 gene has a structure and promoter sequence very different from tyrosinase. Nucleic Acids Res 19: 3799–3804.

    CAS  Google Scholar 

  • Jeffries S, Robbins DJ, Capobianco AJ . (2002). Characterization of a high-molecular-weight Notch complex in the nucleus of Notch (ic)-transformed RKE cells and in a human T-cell leukemia cell line. Mol Cell Biol 22: 3927–3941.

    CAS  Google Scholar 

  • Korte GE, Reppucci V, Henkind P . (1984). RPE destruction causes choriocapillary atrophy. Invest Ophthalmol Vis Sci 25: 1135–1145.

    CAS  Google Scholar 

  • Krebs LT, Iwai N, Nonaka S, Welsh IC, Lan Y, Jiang R et al. (2003). Notch signaling regulates left-right asymmetry determination by inducing Nodal expression. Genes Dev 17: 1207–1212.

    CAS  Google Scholar 

  • Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP et al. (2000). Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14: 1343–1352.

    CAS  Google Scholar 

  • Kumano K, Masuda S, Sata M, Saito T, Lee SY, Sakata-Yanagimoto M et al. (2008). Both Notch1 and Notch2 contribute to the regulation of melanocyte homeostasis. Pigment Cell Melanoma Res 21: 70–78.

    CAS  Google Scholar 

  • Lee HY, Wroblewski E, Philips GT, Stair CN, Conley K, Reedy M et al. (2005). Multiple requirements for Hes 1 during early eye formation. Dev Biol 284: 464–478.

    CAS  Google Scholar 

  • Li L, Krantz ID, Deng Y, Genin A, Banta AB, Collins CC et al. (1997). Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet 16: 243–251.

    CAS  Google Scholar 

  • Liu ZJ, Xiao M, Balint K, Smalley KS, Brafford P, Qiu R et al. (2006). Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res 66: 4182–4190.

    CAS  Google Scholar 

  • Louvi A, Artavanis-Tsakonas S . (2006). Notch signalling in vertebrate neural development. Nat Rev Neurosci 7: 93–102.

    CAS  Google Scholar 

  • Lutty G, Grunwald J, Majji AB, Uyama M, Yoneya S . (1999). Changes in choriocapillaris and retinal pigment epithelium in age-related macular degeneration. Mol Vis 5: 35.

    CAS  Google Scholar 

  • Ma A, Boulton M, Zhao B, Connon C, Cai J, Albon J . (2007). A role for notch signaling in human corneal epithelial cell differentiation and proliferation. Invest Ophthalmol Vis Sci 48: 3576–3585.

    Google Scholar 

  • Mackenzie MA, Jordan SA, Budd PS, Jackson IJ . (1997). Activation of the receptor tyrosine kinase Kit is required for the proliferation of melanoblasts in the mouse embryo. Dev Biol 192: 99–107.

    CAS  Google Scholar 

  • Marmorstein AD, Finnemann SC, Bonilha VL, Rodriguez-Boulan E . (1998). Morphogenesis of the retinal pigment epithelium: toward understanding retinal degenerative diseases. Ann NY Acad Sci 857: 1–12.

    CAS  Google Scholar 

  • Martinez Arias A, Zecchini V, Brennan K . (2002). CSL-independent Notch signalling: a checkpoint in cell fate decisions during development? Curr Opin Genet Dev 12: 524–533.

    Google Scholar 

  • Martinez-Morales JR, Rodrigo I, Bovolenta P . (2004). Eye development: a view from the retina pigmented epithelium. Bioessays 26: 766–777.

    CAS  Google Scholar 

  • Matt N, Dupe V, Garnier JM, Dennefeld C, Chambon P, Mark M et al. (2005). Retinoic acid-dependent eye morphogenesis is orchestrated by neural crest cells. Development 132: 4789–4800.

    CAS  Google Scholar 

  • May CA, Horneber M, Lutjen-Drecoll E . (1996). Quantitative and morphological changes of the choroid vasculature in RCS rats and their congenic controls. Exp Eye Res 63: 75–84.

    CAS  Google Scholar 

  • Mori M, Metzger D, Garnier JM, Chambon P, Mark M . (2002). Site-specific somatic mutagenesis in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 43: 1384–1388.

    Google Scholar 

  • Moriyama M, Osawa M, Mak SS, Ohtsuka T, Yamamoto N, Han H et al. (2006). Notch signaling via Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem cells. J Cell Biol 173: 333–339.

    CAS  Google Scholar 

  • Murisier F, Guichard S, Beermann F . (2006). A conserved transcriptional enhancer that specifies Tyrp1 expression to melanocytes. Dev Biol 298: 644–655.

    CAS  Google Scholar 

  • Murisier F, Guichard S, Beermann F . (2007). Distinct distal regulatory elements control tyrosinase expression in melanocytes and the retinal pigment epithelium. Dev Biol 303: 838–847.

    CAS  Google Scholar 

  • Nguyen M, Arnheiter H . (2000). Signaling and transcriptional regulation in early mammalian eye development: a link between FGF and MITF. Development 127: 3581–3591.

    CAS  Google Scholar 

  • Nickoloff BJ, Osborne BA, Miele L . (2003). Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene 22: 6598–6608.

    CAS  Google Scholar 

  • Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M et al. (2003). Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 33: 416–421.

    CAS  Google Scholar 

  • Nishikawa S, Osawa M . (2007). Generating quiescent stem cells. Pigment Cell Res 20: 263–270.

    Google Scholar 

  • Penna D, Schmidt A, Beermann F . (1998). Tumors of the retinal pigment epithelium metastasize to inguinal lymph nodes and spleen in tyrosinase-related protein 1/SV40T antigen transgenic mice. Oncogene 17: 2601–2607.

    CAS  Google Scholar 

  • Perron M, Harris WA . (2000). Determination of vertebrate retinal progenitor cell fate by the Notch pathway and basic helix–loop–helix transcription factors. Cell Mol Life Sci 57: 215–223.

    CAS  Google Scholar 

  • Pinnix CC, Lee JT, Liu ZJ, McDaid R, Balint K, Beverly LJ et al. (2009). Active Notch1 confers a transformed phenotype to primary human melanocytes. Cancer Res 69: 5312–5320.

    CAS  Google Scholar 

  • Porret A, Merillat AM, Guichard S, Beermann F, Hummler E . (2006). Tissue-specific transgenic and knockout mice. Methods Mol Biol 337: 185–205.

    CAS  Google Scholar 

  • Radtke F, Raj K . (2003). The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 3: 756–767.

    CAS  Google Scholar 

  • Radtke F, Schweisguth F, Pear W . (2005). The Notch ‘gospel’. EMBO Rep 6: 1120–1125.

    CAS  Google Scholar 

  • Radtke F, Wilson A, Stark G, Bauer M, van Meerwijk J, MacDonald HR et al. (1999). Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10: 547–558.

    CAS  Google Scholar 

  • Raymond SM, Jackson IJ . (1995). The retinal pigmented epithelium is required for development and maintenance of the mouse neural retina. Curr Biol 5: 1286–1295.

    CAS  Google Scholar 

  • Rowan S, Conley KW, Le TT, Donner AL, Maas RL, Brown NL . (2008). Notch signaling regulates growth and differentiation in the mammalian lens. Dev Biol 321: 111–122.

    CAS  Google Scholar 

  • Schmidt A, Tief K, Yavuzer U, Beermann F . (1999). Ectopic expression of RET results in microphthalmia and tumors in the retinal pigment epithelium. Int J Cancer 80: 600–605.

    CAS  Google Scholar 

  • Schouwey K, Beermann F . (2008). The Notch pathway: hair graying and pigment cell homeostasis. Histol Histopathol 23: 609–619.

    CAS  Google Scholar 

  • Schouwey K, Delmas V, Larue L, Zimber-Strobl U, Strobl LJ, Radtke F et al. (2007). Notch1 and Notch2 receptors influence progressive hair graying in a dose-dependent manner. Dev Dyn 236: 282–289.

    CAS  Google Scholar 

  • Schouwey K, Larue L, Radtke F, Delmas V, Beermann F . (2010). Transgenic expression of Notch in melanocytes demonstrates RBP-Jkappa-dependent signaling. Pigment Cell Melanoma Res 23: 134–136.

    CAS  Google Scholar 

  • Schraermeyer U, Heimann K . (1999). Current understanding on the role of retinal pigment epithelium and its pigmentation. Pigment Cell Res 12: 219–236.

    CAS  Google Scholar 

  • Schweisguth F . (2004). Regulation of notch signaling activity. Curr Biol 14: R129–R138.

    CAS  Google Scholar 

  • Shields JA, Eagle Jr RC, Shields CL, Brown GC, Lally SE . (2009). Malignant transformation of congenital hypertrophy of the retinal pigment epithelium. Ophthalmology 116: 2213–2216.

    Google Scholar 

  • Soriano P . (1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21: 70–71.

    CAS  Google Scholar 

  • Steinberg RH . (1985). Interactions between the retinal pigment epithelium and the neural retina. Doc Ophthalmol 60: 327–346.

    CAS  Google Scholar 

  • Strauss O . (2005). The retinal pigment epithelium in visual function. Physiol Rev 85: 845–881.

    CAS  Google Scholar 

  • Tanigaki K, Han H, Yamamoto N, Tashiro K, Ikegawa M, Kuroda K et al. (2002). Notch-RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nat Immunol 3: 443–450.

    CAS  Google Scholar 

  • Vauclair S, Majo F, Durham AD, Ghyselinck NB, Barrandon Y, Radtke F . (2007). Corneal epithelial cell fate is maintained during repair by Notch1 signaling via the regulation of vitamin A metabolism. Dev Cell 13: 242–253.

    CAS  Google Scholar 

  • Weng AP, Ferrando AA, Lee W, Morris JPT, Silverman LB, Sanchez-Irizarry C et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306: 269–271.

    CAS  Google Scholar 

  • Wilson A, Radtke F . (2006). Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Lett 580: 2860–2868.

    CAS  Google Scholar 

  • Yashiro-Ohtani Y, He Y, Ohtani T, Jones ME, Shestova O, Xu L et al. (2009). Pre-TCR signaling inactivates Notch1 transcription by antagonizing E2A. Genes Dev 23: 1665–1676.

    CAS  Google Scholar 

  • Yoshida K, Nakayama K, Kase S, Nagahama H, Harada T, Ikeda H et al. (2004). Involvement of p27(KIP1) in proliferation of the retinal pigment epithelium and ciliary body. Anat Embryol (Berl) 208: 145–150.

    CAS  Google Scholar 

  • Zhao S, Overbeek PA . (2001). Regulation of choroid development by the retinal pigment epithelium. Mol Vis 7: 277–282.

    CAS  Google Scholar 

  • Zheng MH, Shi M, Pei Z, Gao F, Han H, Ding YQ . (2009). The transcription factor RBP-J is essential for retinal cell differentiation and lamination. Mol Brain 2: 38.

    Google Scholar 

Download references

Acknowledgements

We thank Pierre Chambon, Tatsuko Honjo, Ursula Zimber-Strobl, Lothar Strobl and Ian J Jackson for mouse strains; to Simon Saule, Vince Hearing and Mickey Marks for antibodies; and to Alessandra Solero and Sabrina Guichard for initial help with the Tyrp1::NotchIC construct and mice. The Pax6 antibody developed by A Kawakami was obtained from the Developmental Studies Hybridoma Bank at the University of Iowa. Work in the laboratory of FB was supported by grants from Oncosuisse, Novartis, the Fondation Emma Muschamps and The Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Beermann.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schouwey, K., Aydin, I., Radtke, F. et al. RBP-Jκ-dependent Notch signaling enhances retinal pigment epithelial cell proliferation in transgenic mice. Oncogene 30, 313–322 (2011). https://doi.org/10.1038/onc.2010.428

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.428

Keywords

This article is cited by

Search

Quick links