Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

DNA copy number aberrations in small-cell lung cancer reveal activation of the focal adhesion pathway

Abstract

Small-cell lung cancer (SCLC) is the most aggressive subtype of lung cancer in its clinical behavior, with a 5-year overall survival as low as 5%. Despite years of research in the field, molecular determinants of SCLC behavior are still poorly understood, and this deficiency has translated into an absence of specific diagnostics and targeted therapeutics. We hypothesized that tumor DNA copy number alterations would allow the identification of molecular pathways involved in SCLC progression. Array comparative genomic hybridization was performed on DNA extracted from 46 formalin-fixed paraffin-embedded SCLC tissue specimens. Genomic profiling of tumor and sex-matched control DNA allowed the identification of 70 regions of copy number gain and 55 regions of copy number loss. Using molecular pathway analysis, we found a strong enrichment in these regions of copy number alterations for 11 genes associated with the focal adhesion pathway. We verified these findings at the genomic, gene expression and protein level. Focal Adhesion Kinase (FAK), one of the central genes represented in this pathway, was commonly expressed in SCLC tumors and constitutively phosphorylated in SCLC cell lines. Those were poorly adherent to most substrates but not to laminin-322. Inhibition of FAK phosphorylation at Tyr397 by a small-molecule inhibitor, PF-573,228, induced a dose-dependent decrease of adhesion and an increase of spreading in SCLC cell lines on laminin-322. Cells that tended to spread also showed a decrease in focal adhesions, as demonstrated by a decreased vinculin expression. These results support the concept that pathway analysis of genes in regions of copy number alterations may uncover molecular mechanisms of disease progression and demonstrate a new role of FAK and associated adhesion pathways in SCLC. Further investigations of FAK at the functional level may lead to a better understanding of SCLC progression and may have therapeutic implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Balsara BR, Testa JR . (2002). Chromosomal imbalances in human lung cancer. Oncogene 21: 6877–6883.

    Article  CAS  Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M, Speed TP . (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: 185–193.

    Article  CAS  Google Scholar 

  • Burridge K, Turner CE, Romer LH . (1992). Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J Cell Biol 119: 893–903.

    Article  CAS  Google Scholar 

  • Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L et al. (2005). Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst 97: 643–655.

    Article  CAS  Google Scholar 

  • Coe BP, Lockwood WW, Girard L, Chari R, Macaulay C, Lam S et al. (2006). Differential disruption of cell cycle pathways in small cell and non-small cell lung cancer. Br J Cancer 94: 1927–1935.

    Article  CAS  Google Scholar 

  • Cooper S, Spiro SG . (2006). Small cell lung cancer: treatment review. Respirology 11: 241–248.

    Article  Google Scholar 

  • Gabarra-Niecko V, Schaller MD, Dunty JM . (2003). FAK regulates biological processes important for the pathogenesis of cancer. Cancer Metastasis Rev 22: 359–374.

    Article  CAS  Google Scholar 

  • Gallia GL, Rand V, Siu IM, Eberhart CG, James CD, Marie SK et al. (2006). PIK3CA gene mutations in pediatric and adult glioblastoma multiforme. Mol Cancer Res 4: 709–714.

    Article  CAS  Google Scholar 

  • Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M et al. (2001). Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA 98: 13784–13789.

    Article  CAS  Google Scholar 

  • Greulich H, Chen TH, Feng W, Janne PA, Alvarez JV, Zappaterra M et al. (2005). Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med 2: e313.

    Article  Google Scholar 

  • Guan JL, Trevithick JE, Hynes RO . (1991). Fibronectin/integrin interaction induces tyrosine phosphorylation of a 120-kDa protein. Cell Regul 2: 951–964.

    Article  CAS  Google Scholar 

  • Hanks SK, Ryzhova L, Shin NY, Brabek J . (2003). Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. Front Biosci 8: d982–d996.

    Article  CAS  Google Scholar 

  • Hirsch FR, Varella-Garcia M, Bunn Jr PA, Di Maria MV, Veve R, Bremmes RM et al. (2003). Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol 21: 3798–3807.

    Article  CAS  Google Scholar 

  • Jackman DM, Johnson BE . (2005). Small-cell lung cancer. Lancet 366: 1385–1396.

    Article  CAS  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ . (2009). Cancer statistics, 2009. CA Cancer J Clin 59: 225–249.

    Article  Google Scholar 

  • Kim YH, Girard L, Giacomini CP, Wang P, Hernandez-Boussard T, Tibshirani R et al. (2006). Combined microarray analysis of small cell lung cancer reveals altered apoptotic balance and distinct expression signatures of MYC family gene amplification. Oncogene 25: 130–138.

    Article  CAS  Google Scholar 

  • Kirov SA, Peng X, Baker E, Schmoyer D, Zhang B, Snoddy J . (2005). GeneKeyDB: a lightweight, gene-centric, relational database to support data mining environments. BMC Bioinformatics 6: 72.

    Article  CAS  Google Scholar 

  • Levin NA, Brzoska P, Gupta N, Minna JD, Gray JW, Christman MF . (1994). Identification of frequent novel genetic alterations in small cell lung carcinoma. Cancer Res 54: 5086–5091.

    CAS  PubMed  Google Scholar 

  • Lindblad-Toh K, Tanenbaum DM, Daly MJ, Winchester E, Lui WO, Villapakkam A et al. (2000). Loss-of-heterozygosity analysis of small-cell lung carcinomas using single-nucleotide polymorphism arrays. Nat Biotechnol 18: 1001–1005.

    Article  CAS  Google Scholar 

  • Massion PP, Kuo WL, Stokoe D, Olshen AB, Treseler PA, Chin K et al. (2002). Genomic copy number analysis of non-small cell lung cancer using array comparative genomic hybridization: implications of the phosphatidylinositol 3-kinase pathway. Cancer Res 62: 3636–3640.

    CAS  Google Scholar 

  • Massion PP, Taflan PM, Jamshedur Rahman SM, Yildiz P, Shyr Y, Edgerton ME et al. (2003). Significance of p63 amplification and overexpression in lung cancer development and prognosis. Cancer Res 63: 7113–7121.

    CAS  Google Scholar 

  • Massion PP, Zou Y, Chen H, Jiang A, Coulson P, Amos CI et al. (2008). Smoking-related genomic signatures in non-small cell lung cancer. Am J Respir Crit Care Med 178: 1164–1172.

    Article  CAS  Google Scholar 

  • Mitra SK, Hanson DA, Schlaepfer DD . (2005). Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6: 56–68.

    Article  CAS  Google Scholar 

  • Miura I, Graziano SL, Cheng JQ, Doyle LA, Testa JR . (1992). Chromosome alterations in human small cell lung cancer: frequent involvement of 5q. Cancer Res 52: 1322–1328.

    CAS  PubMed  Google Scholar 

  • Olejniczak ET, Van Sant C, Anderson MG, Wang G, Tahir SK, Sauter G et al. (2007). Integrative genomic analysis of small-cell lung carcinoma reveals correlates of sensitivity to bcl-2 antagonists and uncovers novel chromosomal gains. Mol Cancer Res 5: 331–339.

    Article  CAS  Google Scholar 

  • Osada H, Tomida S, Yatabe Y, Tatematsu Y, Takeuchi T, Murakami H et al. (2008). Roles of achaete-scute homologue 1 in DKK1 and E-cadherin repression and neuroendocrine differentiation in lung cancer. Cancer Res 68: 1647–1655.

    Article  CAS  Google Scholar 

  • Owens LV, Xu L, Craven RJ, Dent GA, Weiner TM, Kornberg L et al. (1995). Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res 55: 2752–2755.

    CAS  Google Scholar 

  • Parsons JT . (2003). Focal adhesion kinase: the first ten years. J Cell Sci 116: 1409–1416.

    Article  CAS  Google Scholar 

  • Peng WX, Shibata T, Katoh H, Kokubu A, Matsuno Y, Asamura H et al. (2005). Array-based comparative genomic hybridization analysis of high-grade neuroendocrine tumors of the lung. Cancer Sci 96: 661–667.

    Article  CAS  Google Scholar 

  • Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D et al. (1998). High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20: 207–211.

    Article  CAS  Google Scholar 

  • Qian J, Zou Y, Rahman JS, Lu B, Massion PP . (2009). Synergy between phosphatidylinositol 3-kinase/Akt pathway and Bcl-xL in the control of apoptosis in adenocarcinoma cells of the lung. Mol Cancer Ther 8: 101–109.

    Article  CAS  Google Scholar 

  • Ried T, Petersen I, Holtgreve-Grez H, Speicher MR, Schrock E, du Manoir S et al. (1994). Mapping of multiple DNA gains and losses in primary small cell lung carcinomas by comparative genomic hybridization. Cancer Res 54: 1801–1806.

    CAS  PubMed  Google Scholar 

  • Roberts WG, Ung E, Whalen P, Cooper B, Hulford C, Autry C et al. (2008). Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res 68: 1935–1944.

    Article  CAS  Google Scholar 

  • Rozengurt E . (2007). Mitogenic signaling pathways induced by G protein-coupled receptors. J Cell Physiol 213: 589–602.

    Article  CAS  Google Scholar 

  • Schwartz MA, Schaller MD, Ginsberg MH . (1995). Integrins: emerging paradigms of signal transduction. Annu Rev Cell Dev Biol 11: 549–599.

    Article  CAS  Google Scholar 

  • Shi Q, Hjelmeland AB, Keir ST, Song L, Wickman S, Jackson D et al. (2007). A novel low-molecular weight inhibitor of focal adhesion kinase, TAE226, inhibits glioma growth. Mol Carcinog 46: 488–496.

    Article  CAS  Google Scholar 

  • Sidhu GS . (1979). The endodermal origin of digestive and respiratory tract APUD cells. Histopathologic evidence and a review of the literature. Am J Pathol 96: 5–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siesser PM, Hanks SK . (2006). The signaling and biological implications of FAK overexpression in cancer. Clin Cancer Res 12: 3233–3237.

    Article  CAS  Google Scholar 

  • Slack-Davis JK, Martin KH, Tilghman RW, Iwanicki M, Ung EJ, Autry C et al. (2007). Cellular characterization of a novel focal adhesion kinase inhibitor. J Biol Chem 282: 14845–14852.

    Article  CAS  Google Scholar 

  • Sozzi G, Bertoglio MG, Borrello MG, Giani S, Pilotti S, Pierotti M et al. (1987). Chromosomal abnormalities in a primary small cell lung cancer. Cancer Genet Cytogenet 27: 45–50.

    Article  CAS  Google Scholar 

  • Taniwaki M, Daigo Y, Ishikawa N, Takano A, Tsunoda T, Yasui W et al. (2006). Gene expression profiles of small-cell lung cancers: molecular signatures of lung cancer. Int J Oncol 29: 567–575.

    CAS  Google Scholar 

  • Tanno S, Ohsaki Y, Nakanishi K, Toyoshima E, Kikuchi K . (2004). Human small cell lung cancer cells express functional VEGF receptors, VEGFR-2 and VEGFR-3. Lung Cancer 46: 11–19.

    Article  Google Scholar 

  • Ullmann R, Schwendel A, Klemen H, Wolf G, Petersen I, Popper HH . (1998). Unbalanced chromosomal aberrations in neuroendocrine lung tumors as detected by comparative genomic hybridization. Hum Pathol 29: 1145–1149.

    Article  CAS  Google Scholar 

  • Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT et al. (2004). FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol 6: 154–161.

    Article  CAS  Google Scholar 

  • Zhang B, Kirov S, Snoddy J . (2005). WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 33: W741–W748.

    Article  CAS  Google Scholar 

  • Zhao X, Weir BA, LaFramboise T, Lin M, Beroukhim R, Garraway L et al. (2005). Homozygous deletions and chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism array analysis. Cancer Res 65: 5561–5570.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Kathy Taylor, Director of the Research Institute at St Thomas Health Services, Nashville, TN, for sharing archived SCLC tissue blocks; Dr Coe for providing array CGH data (Coe et al., 2006); and Vanderbilt's Immunohistochemistry Core (supported by a Cancer Center Support Grant 5P30 CA068485) for their contribution. We also thank Steven K Hanks, Alissa M Weaver and Donna J Webb for their useful input in the interpretation of the paper. This work was supported by a Merit Review grant from the Department of Veterans Affairs. Dr Ocak was supported by an IASLC Young Investigator Fellowship Award and by a grant from Université Catholique de Louvain (Bourse Clinicien-Chercheur), Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P P Massion.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ocak, S., Yamashita, H., Udyavar, A. et al. DNA copy number aberrations in small-cell lung cancer reveal activation of the focal adhesion pathway. Oncogene 29, 6331–6342 (2010). https://doi.org/10.1038/onc.2010.362

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.362

Keywords

This article is cited by

Search

Quick links