Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

NUB1 promotes cytoplasmic localization of p53 through cooperation of the NEDD8 and ubiquitin pathways

Abstract

Non-covalent recognition of ubiquitin (Ub) and ubiquitin-like molecules (Ubls) by interacting proteins has an important role in the regulation of protein function and initiation of signalling events. In addition, growing evidence suggests that regulation of p53 subcellular localization contributes to the biological outcome of the p53 response. Cytoplasmic p53 is shown to promote apoptosis and inhibit the induction of autophagy. In this study we show that NEDD8 ultimate buster 1 (NUB1), a non-covalent interactor of the Ubl NEDD8 (neural precursor cell expressed, developmentally downregulated 8), controls the localization of p53. Expression of NUB1 leads to decreased modification of p53 with NEDD8 and stimulation of p53 ubiquitination. The biological outcome is the cytoplasmic localization and inhibition of the transcriptional activity of p53. Although the effects of NUB1 on p53 depend on NEDDylation and the murine double minute 2 (Mdm2) E3-ligase, the cooperation of NEDD8 with ubiquitin is required. The data identify a role for NEDD8 in controlling p53 localization and suggest that NEDD8 can control protein function through its non-covalent recognition by interacting proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abida WM, Nikolaev A, Zhao W, Zhang W, Gu W . (2007). FBXO11 promotes the Neddylation of p53 and inhibits its transcriptional activity. J Biol Chem 282: 1797–1804.

    Article  CAS  PubMed  Google Scholar 

  • Boyd SD, Tsai KY, Jacks T . (2000). An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nat Cell Biol 2: 563–568.

    Article  CAS  PubMed  Google Scholar 

  • Brooks CL, Gu W . (2006). p53 ubiquitination: Mdm2 and beyond. Mol Cell 21: 307–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budanov AV, Karin M . (2008). p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134: 451–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter S, Bischof O, Dejean A, Vousden KH . (2007). C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat Cell Biol 9: 428–435.

    Article  CAS  PubMed  Google Scholar 

  • Carter S, Vousden KH . (2009). Modifications of p53: competing for the lysines. Curr Opin Genet Dev 19: 18–24.

    Article  CAS  PubMed  Google Scholar 

  • Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR . (2005). PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309: 1732–1735.

    Article  CAS  PubMed  Google Scholar 

  • Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M et al. (2004). Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303: 1010–1014.

    Article  CAS  PubMed  Google Scholar 

  • Coutts AS, Adams CJ, La Thangue NB . (2009). p53 ubiquitination by Mdm2: a never ending tail? DNA Repair (Amst) 8: 483–490.

    Article  CAS  Google Scholar 

  • Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR et al. (2006). DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126: 121–134.

    Article  CAS  PubMed  Google Scholar 

  • Dohmesen C, Koeppel M, Dobbelstein M . (2008). Specific inhibition of Mdm2-mediated neddylation by Tip60. Cell Cycle 7: 222–231.

    Article  CAS  PubMed  Google Scholar 

  • Geyer RK, Yu ZK, Maki CG . (2000). The MDM2 RING-finger domain is required to promote p53 nuclear export. Nat Cell Biol 2: 569–573.

    Article  CAS  PubMed  Google Scholar 

  • Green DR, Kroemer G . (2009). Cytoplasmic functions of the tumour suppressor p53. Nature 458: 1127–1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hicke L, Schubert HL, Hill CP . (2005). Ubiquitin-binding domains. Nat Rev Mol Cell Biol 6: 610–621.

    Article  CAS  PubMed  Google Scholar 

  • Hipp MS, Raasi S, Groettrup M, Schmidtke G . (2004). NEDD8 ultimate buster-1L interacts with the ubiquitin-like protein FAT10 and accelerates its degradation. J Biol Chem 279: 16503–16510.

    Article  CAS  PubMed  Google Scholar 

  • Hurley JH, Lee S, Prag G . (2006). Ubiquitin-binding domains. Biochem J 399: 361–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamitani T, Kito K, Fukuda-Kamitani T, Yeh ET . (2001). Targeting of NEDD8 and its conjugates for proteasomal degradation by NUB1. J Biol Chem 276: 46655–46660.

    Article  CAS  PubMed  Google Scholar 

  • Kerscher O, Felberbaum R, Hochstrasser M . (2006). Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22: 159–180.

    Article  CAS  PubMed  Google Scholar 

  • Kirkin V, Dikic I . (2007). Role of ubiquitin- and Ubl-binding proteins in cell signaling. Curr Opin Cell Biol 19: 199–205.

    Article  CAS  PubMed  Google Scholar 

  • Kito K, Yeh ET, Kamitani T . (2001). NUB1, a NEDD8-interacting protein, is induced by interferon and down-regulates the NEDD8 expression. J Biol Chem 276: 20603–20609.

    Article  CAS  PubMed  Google Scholar 

  • Laine A, Topisirovic I, Zhai D, Reed JC, Borden KL, Ronai Z . (2006). Regulation of p53 Localization and Activity by Ubc13. Mol Cell Biol 26: 8901–8913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JT, Gu W . (2010). The multiple levels of regulation by p53 ubiquitination. Cell Death Differ 17: 86–92.

    Article  CAS  PubMed  Google Scholar 

  • Lee KAW, Zerivitz K, Akusjärvi G . (1994). Small-scale preparation of nuclear extracts from mammalian cells. In: JE Celis (ed). Cell Biology: A Laboratory Handbook vol. I. Academic Press (Elsevier): Oxford, UK, pp 668–673.

    Google Scholar 

  • Leu JI, Dumont P, Hafey M, Murphy ME, George DL . (2004). Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol 6: 443–450.

    Article  CAS  PubMed  Google Scholar 

  • Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W . (2003). Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302: 1972–1975.

    Article  CAS  PubMed  Google Scholar 

  • Lohrum MA, Woods DB, Ludwig RL, Balint E, Vousden KH . (2001). C-terminal ubiquitination of p53 contributes to nuclear export. Mol Cell Biol 21: 8521–8532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiuri MC, Malik SA, Morselli E, Kepp O, Criollo A, Mouchel PL et al. (2009). Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle 8: 1571–1576.

    Article  CAS  PubMed  Google Scholar 

  • Marchenko ND, Wolff S, Erster S, Becker K, Moll UM . (2007). Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J 26: 923–934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P et al. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11: 577–590.

    Article  CAS  PubMed  Google Scholar 

  • Nikolaev AY, Li M, Puskas N, Qin J, Gu W . (2003). Parc: a cytoplasmic anchor for p53. Cell 10: 29–40.

    Article  Google Scholar 

  • Oh W, Lee EW, Sung YH, Yang MR, Ghim J, Lee HW et al. (2006). Jab1 induces the cytoplasmic localization and degradation of p53 in coordination with Hdm2. J Biol Chem 281: 17457–17465.

    Article  CAS  PubMed  Google Scholar 

  • Rabut G, Peter M . (2008). Function and regulation of protein neddylation. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep 9: 969–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidtke G, Kalveram B, Weber E, Bochtler P, Lukasiak S, Hipp MS et al. (2006). The UBA domains of NUB1L are required for binding but not for accelerated degradation of the ubiquitin-like modifier FAT10. J Biol Chem 281: 20045–20054.

    Article  CAS  PubMed  Google Scholar 

  • Speidel D, Helmbold H, Deppert W . (2006). Dissection of transcriptional and non-transcriptional p53 activities in the response to genotoxic stress. Oncogene 25: 940–953.

    Article  CAS  PubMed  Google Scholar 

  • Sundqvist A, Liu G, Mirsaliotis A, Xirodimas DP . (2009). Regulation of nucleolar signalling to p53 through NEDDylation of L11. EMBO Rep 10: 1132–1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanji K, Tanaka T, Kamitani T . (2005). Interaction of NUB1 with the proteasome subunit S5a. Biochem Biophys Res Commun 337: 116–120.

    Article  CAS  PubMed  Google Scholar 

  • Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M et al. (2008). Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 10: 676–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatham MH, Rodriguez MS, Xirodimas DP, Hay RT . (2009). Detection of protein SUMOylation in vivo. Nat Protoc 4: 1363–1371.

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  PubMed  Google Scholar 

  • Welchman RL, Gordon C, Mayer RJ . (2005). Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol 6: 599–609.

    Article  CAS  PubMed  Google Scholar 

  • Xirodimas D, Saville MK, Edling C, Lane DP, Lain S . (2001a). Different effects of p14ARF on the levels of ubiquitinated p53 and Mdm2 in vivo. Oncogene 20: 4972–4983.

    Article  CAS  PubMed  Google Scholar 

  • Xirodimas DP . (2008). Novel substrates and functions for the ubiquitin-like molecule NEDD8. Biochem Soc Trans 36: 802–806.

    Article  CAS  PubMed  Google Scholar 

  • Xirodimas DP, Saville MK, Bourdon JC, Hay RT, Lane DP . (2004). Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118: 83–97.

    Article  CAS  PubMed  Google Scholar 

  • Xirodimas DP, Stephen CW, Lane DP . (2001b). Cocompartmentalization of p53 and Mdm2 is a major determinant for Mdm2-mediated degradation of p53. Exp Cell Res 270: 66–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Kamitani, Bourdon and Saville for reagents. We also thank Neil Hattersley for help with the immunofluorescence experiments. The work is supported by the Association for International Cancer Research (AICR). DPX is an AICR Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D P Xirodimas.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Xirodimas, D. NUB1 promotes cytoplasmic localization of p53 through cooperation of the NEDD8 and ubiquitin pathways. Oncogene 29, 2252–2261 (2010). https://doi.org/10.1038/onc.2009.494

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.494

Keywords

This article is cited by

Search

Quick links