Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mutant fibroblast growth factor receptor 3 induces intracellular signaling and cellular transformation in a cell type- and mutation-specific manner

Abstract

Although activating mutations of fibroblast growth factor receptor 3 (FGFR3) are frequent in bladder tumors, little information is available on their specific effects in urothelial cells or the basis for the observed mutation spectrum. We investigated the phenotypic and signaling consequences of three FGFR3 mutations (S249C, Y375C, and K652E) in immortalized normal human urothelial cells (TERT-NHUC) and mouse fibroblasts (NIH-3T3). In TERT-NHUC, all mutant forms of FGFR3 induced phosphorylation of FRS2α and ERK1/2, but not AKT or SRC. PLCγ1 phosphorylation was only observed in TERT-NHUC expressing the common S249C and Y375C mutations, and not the rare K652E mutation. Cells expressing S249C and Y375C FGFR3 displayed an increased saturation density, related to increased proliferation and viability. This effect was significantly dependent on PLCγ1 signaling and undetectable in cells expressing K652E FGFR3, which failed to phosphorylate PLCγ1. In contrast to TERT-NHUC, expression of mutant FGFR3 in NIH-3T3 resulted in phosphorylation of Src and Akt. In addition, all forms of mutant FGFR3 were able to phosphorylate Plcγ1 and induce morphological transformation, cell proliferation, and anchorage-independent growth. Our results indicate that the effects of mutant FGFR3 are both cell type specific and mutation specific. Mutant FGFR3 may confer a selective advantage in the urothelium by overcoming normal contact inhibition of proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Adar R, Monsonego-Ornan E, David P, Yayon A . (2002). Differential activation of cysteine-substitution mutants of fibroblast growth factor receptor 3 is determined by cysteine localization. J Bone Miner Res 17: 860–868.

    Article  CAS  Google Scholar 

  • Agazie YM, Movilla N, Ischenko I, Hayman MJ . (2003). The phosphotyrosine phosphatase SHP2 is a critical mediator of transformation induced by the oncogenic fibroblast growth factor receptor 3. Oncogene 22: 6909–6918.

    Article  CAS  Google Scholar 

  • Bernard-Pierrot I, Brams A, Dunois-Larde C, Caillault A, Diez de Medina SG, Cappellen D et al. (2006). Oncogenic properties of the mutated forms of fibroblast growth factor receptor 3b. Carcinogenesis 27: 740–747.

    Article  CAS  Google Scholar 

  • Bonaventure J, Horne WC, Baron R . (2007). The localization of FGFR3 mutations causing thanatophoric dysplasia type I differentially affects phosphorylation, processing and ubiquitylation of the receptor. FEBS J 274: 3078–3093.

    Article  CAS  Google Scholar 

  • Cappellen D, De Oliveira C, Ricol D, de Medina S, Bourdin J, Sastre-Garau X et al. (1999). Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat Genet 23: 18–20.

    Article  CAS  Google Scholar 

  • Chapman EJ, Hurst CD, Pitt E, Chambers P, Aveyard JS, Knowles MA . (2006). Expression of hTERT immortalises normal human urothelial cells without inactivation of the p16/Rb pathway. Oncogene 25: 5037–5045.

    Article  CAS  Google Scholar 

  • Chen J, Williams IR, Lee BH, Duclos N, Huntly BJ, Donoghue DJ et al. (2005). Constitutively activated FGFR3 mutants signal through PLCgamma-dependent and -independent pathways for hematopoietic transformation. Blood 106: 328–337.

    Article  CAS  Google Scholar 

  • Chen L, Adar R, Yang X, Monsonego EO, Li C, Hauschka PV et al. (1999). Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J Clin Invest 104: 1517–1525.

    Article  CAS  Google Scholar 

  • Chesi M, Brents LA, Ely SA, Bais C, Robbiani DF, Mesri EA et al. (2001). Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumor progression in multiple myeloma. Blood 97: 729–736.

    Article  CAS  Google Scholar 

  • d’Avis PY, Robertson SC, Meyer AN, Bardwell WM, Webster MK, Donoghue DJ . (1998). Constitutive activation of fibroblast growth factor receptor 3 by mutations responsible for the lethal skeletal dysplasia thanatophoric dysplasia type I. Cell Growth Differ 9: 71–78.

    PubMed  Google Scholar 

  • Dailey L, Ambrosetti D, Mansukhani A, Basilico C . (2005). Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 16: 233–247.

    Article  CAS  Google Scholar 

  • Eswarakumar VP, Lax I, Schlessinger J . (2005). Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16: 139–149.

    Article  CAS  Google Scholar 

  • Garcia-Espana A, Salazar E, Sun TT, Wu XR, Pellicer A . (2005). Differential expression of cell cycle regulators in phenotypic variants of transgenically induced bladder tumors: implications for tumor behavior. Cancer Res 65: 1150–1157.

    Article  CAS  Google Scholar 

  • Gibbs L, Legeai-Mallet L . (2007). FGFR3 intracellular mutations induce tyrosine phosphorylation in the Golgi and defective glycosylation. Biochim Biophys Acta 1773: 502–512.

    Article  CAS  Google Scholar 

  • Guy M, Moorghen M, Bond JA, Collard TJ, Paraskeva C, Williams AC . (2001). Transcriptional down-regulation of the retinoblastoma protein is associated with differentiation and apoptosis in human colorectal epithelial cells. Br J Cancer 84: 520–528.

    Article  CAS  Google Scholar 

  • Hafner C, Vogt T, Hartmann A . (2006). FGFR3 mutations in benign skin tumors. Cell Cycle 5: 2723–2728.

    Article  CAS  Google Scholar 

  • Harada D, Yamanaka Y, Ueda K, Nishimura R, Morishima T, Seino Y et al. (2007). Sustained phosphorylation of mutated FGFR3 is a crucial feature of genetic dwarfism and induces apoptosis in the ATDC5 chondrogenic cell line via PLCgamma-activated STAT1. Bone 41: 273–281.

    Article  CAS  Google Scholar 

  • Harbour JW, Dean DC . (2000). Rb function in cell-cycle regulation and apoptosis. Nat Cell Biol 2: E65–E67.

    Article  CAS  Google Scholar 

  • Hart KC, Robertson SC, Donoghue DJ . (2001). Identification of tyrosine residues in constitutively activated fibroblast growth factor receptor 3 involved in mitogenesis, Stat activation, and phosphatidylinositol 3-kinase activation. Mol Biol Cell 12: 931–942.

    Article  CAS  Google Scholar 

  • Karoui M, Hofmann-Radvanyi H, Zimmermann U, Couvelard A, Degott C, Faridoni-Laurens L et al. (2001). No evidence of somatic FGFR3 mutation in various types of carcinoma. Oncogene 20: 5059–5061.

    Article  CAS  Google Scholar 

  • Korkolopoulou P, Lazaris A, Konstantinidou AE, Kavantzas N, Patsouris E, Christodoulou P et al. (2002). Differential expression of bcl-2 family proteins in bladder carcinomas. Relationship with apoptotic rate and survival. Eur Urol 41: 274–283.

    Article  CAS  Google Scholar 

  • Legeai-Mallet L, Benoist-Lasselin C, Munnich A, Bonaventure J . (2004). Overexpression of FGFR3, Stat1, Stat5 and p21Cip1 correlates with phenotypic severity and defective chondrocyte differentiation in FGFR3-related chondrodysplasias. Bone 34: 26–36.

    Article  CAS  Google Scholar 

  • Li C, Chen L, Iwata T, Kitagawa M, Fu XY, Deng CX . (1999). A Lys644Glu substitution in fibroblast growth factor receptor 3 (FGFR3) causes dwarfism in mice by activation of STATs and ink4 cell cycle inhibitors. Hum Mol Genet 8: 35–44.

    Article  CAS  Google Scholar 

  • Lievens PM, Liboi E . (2003). The thanatophoric dysplasia type II mutation hampers complete maturation of fibroblast growth factor receptor 3 (FGFR3), which activates signal transducer and activator of transcription 1 (STAT1) from the endoplasmic reticulum. J Biol Chem 278: 17344–17349.

    Article  CAS  Google Scholar 

  • Lievens PM, Roncador A, Liboi E . (2006). K644E/M FGFR3 mutants activate Erk1/2 from the endoplasmic reticulum through FRS2alpha and PLCgamma-independent pathways. J Mol Biol 357: 783–792.

    Article  CAS  Google Scholar 

  • Martinez-Torrecuadrada J, Cifuentes G, Lopez-Serra P, Saenz P, Martinez A, Casal JI . (2005). Targeting the extracellular domain of fibroblast growth factor receptor 3 with human single-chain Fv antibodies inhibits bladder carcinoma cell line proliferation. Clin Cancer Res 11: 6280–6290.

    Article  CAS  Google Scholar 

  • Monsonego-Ornan E, Adar R, Rom E, Yayon A . (2002). FGF receptors ubiquitylation: dependence on tyrosine kinase activity and role in downregulation. FEBS Lett 528: 83–89.

    Article  CAS  Google Scholar 

  • Murakami M, Elfenbein A, Simons M . (2008). Non-canonical fibroblast growth factor signalling in angiogenesis. Cardiovasc Res 78: 223–231.

    Article  CAS  Google Scholar 

  • Naski MC, Wang Q, Xu J, Ornitz DM . (1996). Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nat Genet 13: 233–237.

    Article  CAS  Google Scholar 

  • Ornitz DM, Itoh N . (2001). Fibroblast growth factors. Genome Biol 2: REVIEWS3005.

    Article  CAS  Google Scholar 

  • Ronchetti D, Greco A, Compasso S, Colombo G, Dell’Era P, Otsuki T et al. (2001). Deregulated FGFR3 mutants in multiple myeloma cell lines with t(4;14): comparative analysis of Y373C, K650E and the novel G384D mutations. Oncogene 20: 3553–3562.

    Article  CAS  Google Scholar 

  • Sahni M, Ambrosetti DC, Mansukhani A, Gertner R, Levy D, Basilico C . (1999). FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Genes Dev 13: 1361–1366.

    Article  CAS  Google Scholar 

  • Santamaria D, Barriere C, Cerqueira A, Hunt S, Tardy C, Newton K et al. (2007). Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448: 811–815.

    Article  CAS  Google Scholar 

  • Sibley K, Cuthbert-Heavens D, Knowles MA . (2001a). Loss of heterozygosity at 4p16.3 and mutation of FGFR3 in transitional cell carcinoma. Oncogene 20: 686–691.

    Article  CAS  Google Scholar 

  • Sibley K, Stern P, Knowles MA . (2001b). Frequency of fibroblast growth factor receptor 3 mutations in sporadic tumours. Oncogene 20: 4416–4418.

    Article  CAS  Google Scholar 

  • Su WC, Kitagawa M, Xue N, Xie B, Garofalo S, Cho J et al. (1997). Activation of Stat1 by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type II dwarfism. Nature 386: 288–292.

    Article  CAS  Google Scholar 

  • Tomlinson DC, Baldo O, Harnden P, Knowles MA . (2007a). FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J Pathol 213: 91–98.

    Article  CAS  Google Scholar 

  • Tomlinson DC, Hurst CD, Knowles MA . (2007b). Knockdown by shRNA identifies S249C mutant FGFR3 as a potential therapeutic target in bladder cancer. Oncogene 26: 5889–5899.

    Article  CAS  Google Scholar 

  • Tomlinson DC, L’Hote CG, Kennedy W, Pitt E, Knowles MA . (2005). Alternative splicing of fibroblast growth factor receptor 3 produces a secreted isoform that inhibits fibroblast growth factor-induced proliferation and is repressed in urothelial carcinoma cell lines. Cancer Res 65: 10441–10449.

    Article  CAS  Google Scholar 

  • van Oers JM, Adam C, Denzinger S, Stoehr R, Bertz S, Zaak D et al. (2006). Chromosome 9 deletions are more frequent than FGFR3 mutations in flat urothelial hyperplasias of the bladder. Int J Cancer 119: 1212–1215.

    Article  CAS  Google Scholar 

  • van Rhijn BW, van Tilborg AA, Lurkin I, Bonaventure J, de Vries A, Thiery JP et al. (2002). Novel fibroblast growth factor receptor 3 (FGFR3) mutations in bladder cancer previously identified in non-lethal skeletal disorders. Eur J Hum Genet 10: 819–824.

    Article  CAS  Google Scholar 

  • Wallerand H, Bakkar AA, de Medina SG, Pairon JC, Yang YC, Vordos D et al. (2005). Mutations in TP53, but not FGFR3, in urothelial cell carcinoma of the bladder are influenced by smoking: contribution of exogenous versus endogenous carcinogens. Carcinogenesis 26: 177–184.

    Article  CAS  Google Scholar 

  • Webster MK, D’Avis PY, Robertson SC, Donoghue DJ . (1996). Profound ligand-independent kinase activation of fibroblast growth factor receptor 3 by the activation loop mutation responsible for a lethal skeletal dysplasia, thanatophoric dysplasia type II. Mol Cell Biol 16: 4081–4087.

    Article  CAS  Google Scholar 

  • Webster MK, Donoghue DJ . (1997). Enhanced signaling and morphological transformation by a membrane-localized derivative of the fibroblast growth factor receptor 3 kinase domain. Mol Cell Biol 17: 5739–5747.

    Article  CAS  Google Scholar 

  • Wells A, Grandis JR . (2003). Phospholipase C-gamma1 in tumor progression. Clin Exp Metastasis 20: 285–290.

    Article  CAS  Google Scholar 

  • Yamamoto H, Monden T, Ikeda K, Izawa H, Fukuda K, Fukunaga M et al. (1995). Coexpression of cdk2/cdc2 and retinoblastoma gene products in colorectal cancer. Br J Cancer 71: 1231–1236.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr D Podolsky for donating the FGFR3 IIIb cDNA, and Dr R Agami for the pFB expression vector. This work was funded by a grant from Cancer Research UK (C6228/A5433).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Knowles.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

di Martino, E., L'Hôte, C., Kennedy, W. et al. Mutant fibroblast growth factor receptor 3 induces intracellular signaling and cellular transformation in a cell type- and mutation-specific manner. Oncogene 28, 4306–4316 (2009). https://doi.org/10.1038/onc.2009.280

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.280

Keywords

This article is cited by

Search

Quick links