Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Involvement of Rac and Rho signaling in cancer cell motility in 3D substrates

Abstract

The motility of cancer cells in 3D matrices is of two types: mesenchymal motility, in which the cells are elongated and amoeboid motility, in which the cells are round. Amoeboid motility is driven by an actomyosin-based contractile force, which is regulated by the Rho/ROCK pathway. However, the molecular mechanisms underlying the motility of elongated cells remain unknown. Here, we show that the motility of elongated cells is regulated by Rac signaling through the WAVE2/Arp2/3-dependent formation of elongated pseudopodia and cell-substrate adhesion in 3D substrates. The involvement of Rac signaling in cell motility was different in cell lines that displayed an elongated morphology in 3D substrates. In U87MG glioblastoma cells, most of which exhibit mesenchymal motility, inhibition of Rac signaling blocked the invasion of these cells in 3D substrates. In HT1080 fibrosarcoma cells, which display mixed cell motility involving both elongated and rounded cells, inhibition of Rac1 signaling not only blocked mesenchymal motility but also caused a mesenchymal–amoeboid transition. Additionally, Rac1 and RhoA signaling regulated the mesenchymal and amoeboid motility in these cells, respectively, and the inhibition of both pathways dramatically decreased cell invasion. Hence, we could conclude that Rac1 and RhoA signaling simultaneously regulate cell invasion in 3D matrices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Burridge K, Wennerberg K . (2004). Rho and Rac take center stage. Cell 116: 167–179.

    Article  CAS  Google Scholar 

  • Carragher NO, Walker SM, Scott Carragher LA, Harris F, Sawyer TK, Brunton VG et al. (2006). Calpain 2 and Src dependence distinguishes mesenchymal and amoeboid modes of tumour cell invasion: a link to integrin function. Oncogene 25: 5726–5740.

    Article  CAS  Google Scholar 

  • Chan AY, Coniglio SJ, Chuang YY, Michaelson D, Knaus UG, Philips MR et al. (2005). Roles of the Rac1 and Rac3 GTPases in human tumor cell invasion. Oncogene 24: 7821–7829.

    Article  CAS  Google Scholar 

  • Fackler OT, Grosse R . (2008). Cell motility through plasma membrane blebbing. J Cell Biol 181: 879–884.

    Article  CAS  Google Scholar 

  • Friedl P . (2004). Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol 16: 14–23.

    Article  CAS  Google Scholar 

  • Friedl P, Wolf K . (2003). Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3: 362–374.

    Article  CAS  Google Scholar 

  • Furutani M, Itoh T, Ijuin T, Tsujita K, Takenawa T . (2006). Thin layer chromatography-blotting, a novel method for the detection of phosphoinositides. J Biochem (Tokyo) 139: 663–670.

    Article  CAS  Google Scholar 

  • Gadea G, de Toledo M, Anguille C, Roux P . (2007). Loss of p53 promotes RhoA-ROCK-dependent cell migration and invasion in 3D matrices. J Cell Biol 178: 23–30.

    Article  CAS  Google Scholar 

  • Goldberg L, Kloog Y . (2006). A Ras inhibitor tilts the balance between Rac and Rho and blocks phosphatidylinositol 3-kinase-dependent glioblastoma cell migration. Cancer Res 66: 11709–11717.

    Article  CAS  Google Scholar 

  • Griffith LG, Swartz MA . (2006). Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7: 211–224.

    Article  CAS  Google Scholar 

  • Guo F, Debidda M, Yang L, Williams DA, Zheng Y . (2006). Genetic deletion of Rac1 GTPase reveals its critical role in actin stress fiber formation and focal adhesion complex assembly. J Biol Chem 281: 18652–18659.

    Article  CAS  Google Scholar 

  • Hall A . (2005). Rho GTPases and the control of cell behaviour. Biochem Soc Trans 33: 891–895.

    Article  CAS  Google Scholar 

  • Iwaya K, Norio K, Mukai K . (2007a). Coexpression of Arp2 and WAVE2 predicts poor outcome in invasive breast carcinoma. Mod Pathol 20: 339–343.

    Article  CAS  Google Scholar 

  • Iwaya K, Oikawa K, Semba S, Tsuchiya B, Mukai Y, Otsubo T et al. (2007b). Correlation between liver metastasis of the colocalization of actin-related protein 2 and 3 complex and WAVE2 in colorectal carcinoma. Cancer Sci 98: 992–999.

    Article  CAS  Google Scholar 

  • Kitzing TM, Sahadevan AS, Brandt DT, Knieling H, Hannemann S, Fackler OT et al. (2007). Positive feedback between Dia1, LARG, and RhoA regulates cell morphology and invasion. Genes Dev 21: 1478–1483.

    Article  CAS  Google Scholar 

  • Kurisu S, Suetsugu S, Yamazaki D, Yamaguchi H, Takenawa T . (2005). Rac-WAVE2 signaling is involved in the invasive and metastatic phenotypes of murine melanoma cells. Oncogene 24: 1309–1319.

    Article  CAS  Google Scholar 

  • Meshel AS, Wei Q, Adelstein RS, Sheetz MP . (2005). Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat Cell Biol 7: 157–164.

    Article  CAS  Google Scholar 

  • Nakazawa T, Watabe AM, Tezuka T, Yoshida Y, Yokoyama K, Umemori H et al. (2003). p250GAP, a novel brain-enriched GTPase-activating protein for Rho family GTPases, is involved in the N-methyl-d-aspartate receptor signaling. Mol Biol Cell 14: 2921–2934.

    Article  CAS  Google Scholar 

  • Ohta Y, Hartwig JH, Stossel TP . (2006). FilGAP, a Rho- and ROCK-regulated GAP for Rac binds filamin A to control actin remodelling. Nat Cell Biol 8: 803–814.

    Article  CAS  Google Scholar 

  • Paluch E, Sykes C, Prost J, Bornens M . (2006). Dynamic modes of the cortical actomyosin gel during cell locomotion and division. Trends Cell Biol 16: 5–10.

    Article  CAS  Google Scholar 

  • Pampaloni F, Reynaud EG, Stelzer EH . (2007). The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8: 839–845.

    Article  CAS  Google Scholar 

  • Sabeh F, Ota I, Holmbeck K, Birkedal-Hansen H, Soloway P, Balbin M et al. (2004). Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J Cell Biol 167: 769–781.

    Article  CAS  Google Scholar 

  • Sahai E, Garcia-Medina R, Pouyssegur J, Vial E . (2007). Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility. J Cell Biol 176: 35–42.

    Article  CAS  Google Scholar 

  • Sahai E . (2005). Mechanisms of cancer cell invasion. Curr Opin Genet Dev 15: 87–96.

    Article  CAS  Google Scholar 

  • Sahai E . (2007). Illuminating the metastatic process. Nat Rev Cancer 7: 737–749.

    Article  CAS  Google Scholar 

  • Sahai E, Marshall CJ . (2002). RHO-GTPases and cancer. Nat Rev Cancer 2: 133–142.

    Article  Google Scholar 

  • Sahai E, Marshall CJ . (2003). Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 5: 711–719.

    Article  CAS  Google Scholar 

  • Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S et al. (2008). Rac activation and inactivation control plasticity of tumor cell movement. Cell 135: 510–523.

    Article  CAS  Google Scholar 

  • Semba S, Iwaya K, Matsubayashi J, Serizawa H, Kataba H, Hirano T et al. (2006). Coexpression of actin-related protein 2 and Wiskott-Aldrich syndrome family verproline-homologous protein 2 in adenocarcinoma of the lung. Clin Cancer Res 12: 2449–2454.

    Article  CAS  Google Scholar 

  • Suetsugu S, Yamazaki D, Kurisu S, Takenawa T . (2003). Differential roles of WAVE1 and WAVE2 in dorsal and peripheral ruffle formation for fibroblast cell migration. Dev Cell 5: 595–609.

    Article  CAS  Google Scholar 

  • Takenawa T, Suetsugu S . (2007). The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 8: 37–48.

    Article  CAS  Google Scholar 

  • Torka R, Thuma F, Herzog V, Kirfel G . (2006). ROCK signaling mediates the adoption of different modes of migration and invasion in human mammary epithelial tumor cells. Exp Cell Res 312: 3857–3871.

    Article  CAS  Google Scholar 

  • Vial E, Sahai E, Marshall CJ . (2003). ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell 4: 67–79.

    Article  CAS  Google Scholar 

  • Wilkinson S, Paterson HF, Marshall CJ . (2005). Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nat Cell Biol 7: 255–261.

    Article  CAS  Google Scholar 

  • Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI et al. (2003). Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160: 267–277.

    Article  CAS  Google Scholar 

  • Wolf K, Wu YI, Liu Y, Geiger J, Tam E, Overall C et al. (2007). Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9: 893–904.

    Article  CAS  Google Scholar 

  • Wyckoff JB, Pinner SE, Gschmeissner S, Condeelis JS, Sahai E . (2006). ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr Biol 16: 1515–1523.

    Article  CAS  Google Scholar 

  • Yamada KM, Cukierman E . (2007). Modeling tissue morphogenesis and cancer in 3D. Cell 130: 601–610.

    Article  CAS  Google Scholar 

  • Yamazaki D, Kurisu S, Takenawa T . (2005). Regulation of cancer cell motility through actin reorganization. Cancer Sci 96: 379–386.

    Article  CAS  Google Scholar 

  • Yamazaki D, Suetsugu S, Miki H, Kataoka Y, Nishikawa S, Fujiwara T et al. (2003). WAVE2 is required for directed cell migration and cardiovascular development. Nature 424: 452–456.

    Article  CAS  Google Scholar 

  • Yip SC, El-Sibai M, Coniglio SJ, Mouneimne G, Eddy RJ, Drees BE et al. (2007). The distinct roles of Ras and Rac in PI 3-kinase-dependent protrusion during EGF-stimulated cell migration. J Cell Sci 120: 3138–3146.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank for Dr T Azuma for providing cancer cell lines. We are grateful to Dr T Yamamoto and Dr T Nakazawa for providing GST-Rhotekin-RBD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Takenawa.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamazaki, D., Kurisu, S. & Takenawa, T. Involvement of Rac and Rho signaling in cancer cell motility in 3D substrates. Oncogene 28, 1570–1583 (2009). https://doi.org/10.1038/onc.2009.2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.2

Keywords

This article is cited by

Search

Quick links