Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cyclic GMP-dependent protein kinase II inhibits cell proliferation, Sox9 expression and Akt phosphorylation in human glioma cell lines

Abstract

Earlier we used a glioma model to identify loci in the mouse genome, which were repeatedly targeted by platelet-derived growth factor (PDGF)-containing Moloney murine leukemia viruses. The gene Prkg2, encoding cyclic guanosine monophosphate (cGMP)-dependent protein kinase II, cGKII, was tagged by retroviral insertions in two brain tumors. The insertions were both situated upstream of the kinase domain and suggested creating a truncated form of the cGKII protein. We transfected different human glioma cell lines with Prkg2 and found an overall reduction in colony formation and cell proliferation compared with controls transfected with truncated Prkg2 (lacking the kinase domain) or empty vector. All glioma cells transfected with the cGKII phosphorylate vasodilator-stimulated phosphoprotein, VASP, after cGMP analog treatment. Glioma cell lines positive for the Sox9 transcription factor showed reduced Sox9 expression when Prkg2 was stably transfected. When cGKII was activated by cGMP analog treatment, Sox9 was phosphorylated, Sox9 protein expression was suppressed and the glioma cell lines displayed loss of cell adhesion, inhibition of Akt phosphorylation and G1 arrest. Sox9 repression by siRNA was similarly shown to reduce glioma cell proliferation. Expression analysis of stem and glial lineage cell markers also suggests that cGKII induces differentiation of glioma cell lines. These findings describe an anti-proliferative role of cGKII in human glioma biology and would further explain the retroviral tagging of the cGKII gene during brain tumor formation in PDGF-induced tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Butt E, Abel K, Krieger M, Palm D, Hoppe V, Hoppe J et al. (1994). cAMP- and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J Biol Chem 269: 14509–14517.

    CAS  PubMed  Google Scholar 

  • Cen B, Deguchi A, Weinstein IB . (2008). Activation of protein kinase G increases the expression of p21CIP1, p27KIP1, and histidine triad protein 1 through Sp1. Cancer Res 68: 5355–5362.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Daum G, Chitaley K, Coats SA, Bowen-Pope DF, Eigenthaler M et al. (2004). Vasodilator-stimulated phosphoprotein regulates proliferation and growth inhibition by nitric oxide in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 24: 1403–1408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung M, Briscoe J . (2003). Neural crest development is regulated by the transcription factor Sox9. Development 130: 5681–5693.

    Article  CAS  PubMed  Google Scholar 

  • Chikuda H, Kugimiya F, Hoshi K, Ikeda T, Ogasawara T, Shimoaka T et al. (2004). Cyclic GMP-dependent protein kinase II is a molecular switch from proliferation to hypertrophic differentiation of chondrocytes. Genes Dev 18: 2418–2429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook AL, Haynes JM . (2004). Protein kinase G II-mediated proliferative effects in human cultured prostatic stromal cells. Cell Signal 16: 253–261.

    Article  CAS  PubMed  Google Scholar 

  • Deguchi A, Thompson WJ, Weinstein IB . (2004). Activation of protein kinase G is sufficient to induce apoptosis and inhibit cell migration in colon cancer cells. Cancer Res 64: 3966–3973.

    Article  CAS  PubMed  Google Scholar 

  • Dromard C, Bartolami S, Deleyrolle L, Takebayashi H, Ripoll C, Simonneau L et al. (2007). NG2 and Olig2 expression provides evidence for phenotypic deregulation of cultured central nervous system and peripheral nervous system neural precursor cells. Stem Cells 25: 340–353.

    Article  CAS  PubMed  Google Scholar 

  • Finzsch M, Stolt CC, Lommes P, Wegner M . (2008). Sox9 and Sox10 influence survival and migration of oligodendrocyte precursors in the spinal cord by regulating PDGF receptor alpha expression. Development 135: 637–646.

    Article  CAS  PubMed  Google Scholar 

  • Gambaryan S, Palmetshofer A, Glazova M, Smolenski A, Kristjansson GI, Zimmer M et al. (2002). Inhibition of cGMP-dependent protein kinase II by its own splice isoform. Biochem Biophys Res Commun 293: 1438–1444.

    Article  CAS  PubMed  Google Scholar 

  • Gudi T, Hong GK, Vaandrager AB, Lohmann SM, Pilz RB . (1999). Nitric oxide and cGMP regulate gene expression in neuronal and glial cells by activating type II cGMP-dependent protein kinase. FASEB J 13: 2143–2152.

    Article  CAS  PubMed  Google Scholar 

  • Guha A, Dashner K, Black PM, Wagner JA, Stiles CD . (1995). Expression of PDGF and PDGF receptors in human astrocytoma operation specimens supports the existence of an autocrine loop. Int J Cancer 60: 168–173.

    Article  CAS  PubMed  Google Scholar 

  • Hagerstrand D, Hesselager G, Achterberg S, Wickenberg Bolin U, Kowanetz M, Kastemar M et al. (2006). Characterization of an imatinib-sensitive subset of high-grade human glioma cultures. Oncogene 25: 4913–4922.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann F, Feil R, Kleppisch T, Schlossmann J . (2006). Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol Rev 86: 1–23.

    Article  CAS  PubMed  Google Scholar 

  • Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN . (2000). Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25: 55–57.

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Gupta N, Schoenlein P, Wong E, Martindale R, Ganapathy V et al. (2006). An anti-tumor role for cGMP-dependent protein kinase. Cancer Lett 240: 60–68.

    Article  CAS  PubMed  Google Scholar 

  • Humphrey PA, Wong AJ, Vogelstein B, Friedman HS, Werner MH, Bigner DD et al. (1988). Amplification and expression of the epidermal growth factor receptor gene in human glioma xenografts. Cancer Res 48: 2231–2238.

    CAS  PubMed  Google Scholar 

  • Johansson FK, Brodd J, Eklof C, Ferletta M, Hesselager G, Tiger CF et al. (2004). Identification of candidate cancer-causing genes in mouse brain tumors by retroviral tagging. Proc Natl Acad Sci USA 101: 11334–11337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson FK, Goransson H, Westermark B . (2005). Expression analysis of genes involved in brain tumor progression driven by retroviral insertional mutagenesis in mice. Oncogene 24: 3896–3905.

    Article  CAS  PubMed  Google Scholar 

  • Johansson Swartling F . (2008). Identifying candidate genes involved in brain tumor formation. Ups J Med Sci 113: 1–38.

    Article  PubMed  Google Scholar 

  • Kordes U, Hagel C . (2006). Expression of SOX9 and SOX10 in central neuroepithelial tumor. J Neurooncol 80: 151–155.

    Article  CAS  PubMed  Google Scholar 

  • Lahortiga I, Akin C, Cools J, Wilson TM, Mentens N, Arthur DC et al. (2008). Activity of imatinib in systemic mastocytosis with chronic basophilic leukemia and a PRKG2–PDGFRB fusion. Haematologica 93: 49–56.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI et al. (1997). PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275: 1943–1947.

    Article  CAS  PubMed  Google Scholar 

  • Libermann TA, Nusbaum HR, Razon N, Kris R, Lax I, Soreq H et al. (1985). Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 313: 144–147.

    Article  CAS  PubMed  Google Scholar 

  • Nister M, Libermann TA, Betsholtz C, Pettersson M, Claesson-Welsh L, Heldin CH et al. (1988). Expression of messenger RNAs for platelet-derived growth factor and transforming growth factor-alpha and their receptors in human malignant glioma cell lines. Cancer Res 48: 3910–3918.

    CAS  PubMed  Google Scholar 

  • Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science 321: 1807–1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD et al. (2006). Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9: 157–173.

    Article  CAS  PubMed  Google Scholar 

  • Smolenski A, Burkhardt AM, Eigenthaler M, Butt E, Gambaryan S, Lohmann SM et al. (1998). Functional analysis of cGMP-dependent protein kinases I and II as mediators of NO/cGMP effects. Naunyn Schmiedebergs Arch Pharmacol 358: 134–139.

    Article  CAS  PubMed  Google Scholar 

  • Smolenski A, Poller W, Walter U, Lohmann SM . (2000). Regulation of human endothelial cell focal adhesion sites and migration by cGMP-dependent protein kinase I. J Biol Chem 275: 25723–25732.

    Article  CAS  PubMed  Google Scholar 

  • Sottile V, Li M, Scotting PJ . (2006). Stem cell marker expression in the Bergmann glia population of the adult mouse brain. Brain Res 1099: 8–17.

    Article  CAS  PubMed  Google Scholar 

  • Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH et al. (1997). Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15: 356–362.

    Article  CAS  PubMed  Google Scholar 

  • Stolt CC, Lommes P, Sock E, Chaboissier MC, Schedl A, Wegner M . (2003). The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev 17: 1677–1689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka J, Markerink-van Ittersum M, Steinbusch HW, De Vente J . (1997). Nitric oxide-mediated cGMP synthesis in oligodendrocytes in the developing rat brain. Glia 19: 286–297.

    Article  CAS  PubMed  Google Scholar 

  • Taylor MK, Ahmed R, Begley M, Uhler MD . (2002). Autoinhibition and isoform-specific dominant negative inhibition of the type II cGMP-dependent protein kinase. J Biol Chem 277: 37242–37253.

    Article  CAS  PubMed  Google Scholar 

  • Uhrbom L, Hesselager G, Nister M, Westermark B . (1998). Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res 58: 5275–5279.

    CAS  PubMed  Google Scholar 

  • Villalobo A . (2006). Nitric oxide and cell proliferation. FEBS J 273: 2329–2344.

    Article  CAS  PubMed  Google Scholar 

  • Vindelov LL, Christensen IJ, Nissen NI . (1983). A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry 3: 323–327.

    Article  CAS  PubMed  Google Scholar 

  • Walz C, Metzgeroth G, Haferlach C, Schmitt-Graeff A, Fabarius A, Hagen V et al. (2007). Characterization of three new imatinib-responsive fusion genes in chronic myeloproliferative disorders generated by disruption of the platelet-derived growth factor receptor beta gene. Haematologica 92: 163–169.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Leav I, Ibaragi S, Wegner M, Hu GF, Lu ML et al. (2008). SOX9 is expressed in human fetal prostate epithelium and enhances prostate cancer invasion. Cancer Res 68: 1625–1630.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, McKnight NC, Zhang T, Lu ML, Balk SP, Yuan X . (2007). SOX9 is expressed in normal prostate basal cells and regulates androgen receptor expression in prostate cancer cells. Cancer Res 67: 528–536.

    Article  CAS  PubMed  Google Scholar 

  • Wang SI, Puc J, Li J, Bruce JN, Cairns P, Sidransky D et al. (1997). Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res 57: 4183–4186.

    CAS  PubMed  Google Scholar 

  • Yin D, Wang X, Konda BM, Ong JM, Hu J, Sacapano MR et al. (2008). Increase in brain tumor permeability in glioma-bearing rats with nitric oxide donors. Clin Cancer Res 14: 4002–4009.

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka A, Yamaya Y, Saiki S, Kanemoto M, Hirose G, Pleasure D . (2000). Cyclic GMP/cyclic GMP-dependent protein kinase system prevents excitotoxicity in an immortalized oligodendroglial cell line. J Neurochem 74: 633–640.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Swedish Cancer Foundation, the Children's Cancer Foundation, the Swedish Research Council and the Swedish Foundation for Strategic Research. We acknowledge Lisa Christiansson for skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Westermark.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swartling, F., Ferletta, M., Kastemar, M. et al. Cyclic GMP-dependent protein kinase II inhibits cell proliferation, Sox9 expression and Akt phosphorylation in human glioma cell lines. Oncogene 28, 3121–3131 (2009). https://doi.org/10.1038/onc.2009.168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.168

Keywords

This article is cited by

Search

Quick links