Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

FOXO3a mediates the androgen-dependent regulation of FLIP and contributes to TRAIL-induced apoptosis of LNCaP cells

Abstract

Androgen-withdrawal-induced apoptosis (AWIA) is deregulated in androgen refractory prostate cancer. Androgens have been shown to positively regulate expression of the antiapoptotic FADD-like interleukin-1β-converting enzyme (FLICE)-like inhibitory protein (FLIP), and reduced FLIP expression precedes apoptosis after androgen withdrawal. Here, we show that FLIP protein expression is downregulated in castrated rats, while in LNCaP cells, androgens regulate FLIP in a manner that is dependent on phosphoinositol-3-kinase (PI3K) and Akt signaling. Specifically, treatment of LNCaP cells with LY294002, or expression of either PTEN or a non-phosphorylatable form of FOXO3a (FOXO3aTM), downregulates FLIP protein and mRNA. Conversely, treatment with androgens in the absence of PI3/Akt signaling, or following expression of FOXO3aTM, leads to increased FLIP expression. A FOXO3a binding site was identified in the FLIP promoter and shown necessary for the combined effects of androgens and FOXO3a on FLIP transcription. FOXO3a binds the androgen receptor, suggesting that the transcriptional synergy depends on an interaction between these proteins. Finally, LNCaP cells are sensitized to TRAIL-induced apoptosis by PTEN or LY294002, and rescued by androgens. FOXO3aTM also sensitizes cells to androgen-inhibited TRAIL apoptosis. Androgen rescue was diminished when either FOXO3a or FLIP was reduced by siRNA. These data support a role for FOXO3a in AWIA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Ayala G, Thompson T, Yang G, Frolov A, Li R, Scardino P et al. (2004). High levels of phosphorylated form of Akt-1 in prostate cancer and non-neoplastic prostate tissues are strong predictors of biochemical recurrence. Clin Cancer Res 10: 6572–6578.

    Article  CAS  PubMed  Google Scholar 

  • Bertram J, Peacock JW, Fazli L, Mui AL, Chung SW, Cox ME et al. (2006). Loss of PTEN is associated with progression to androgen independence. Prostate 66: 895–902.

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857–868.

    Article  CAS  PubMed  Google Scholar 

  • Cully M, You H, Levine AJ, Mak TW . (2006). Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6: 184–192.

    Article  CAS  PubMed  Google Scholar 

  • Daskivich TJ, Oh WK . (2006). Recent progress in hormonal therapy for advanced prostate cancer. Curr Opin Urol 16: 173–178.

    Article  PubMed  Google Scholar 

  • De la Taille A, Chen MW, Shabsigh A, Bagiella E, Kiss A, Buttyan R . (1999). Fas antigen/CD-95 upregulation and activation during castration-induced regression of the rat ventral prostate gland. Prostate 40: 89–96.

    Article  CAS  PubMed  Google Scholar 

  • Furutani T, Watanabe T, Tanimoto K, Hashimoto T, Koutoku H, Kudoh M et al. (2002). Stabilization of androgen receptor protein is induced by agonist, not by antagonists. Biochem Biophys Res Commun 294: 779–784.

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Lee P, Wang H, Gerald W, Adler M, Zhang L et al. (2005). The androgen receptor directly targets the c-FLIP gene to promote the androgen-independent growth of prostate cancer cells. Mol Endocrinol 19: 1792–1802.

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Wang H, Lee P, Melamed J, Li CX, Zhang F et al. (2006). Androgen receptor and prostate apoptosis response factor-4 target the c-FLIP gene to determine survival and apoptosis in the prostate gland. J Mol Endocrinol 36: 463–483.

    Article  CAS  PubMed  Google Scholar 

  • Hermans KG, van Alewijk DC, Veltman JA, van Weerden W, van Kessel AG, Trapman J . (2004). Loss of a small region around the PTEN locus is a major chromosome 10 alteration in prostate cancer xenografts and cell lines. Genes Chromosomes Cancer 39: 171–184.

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Muddiman DC, Tindall DJ . (2004). Androgens negatively regulate forkhead transcription factor FKHR (FOXO1) through a proteolytic mechanism in prostate cancer cells. J Biol Chem 279: 13866–13877.

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C et al. (2006). Cancer statistics. CA Cancer J Clin 56: 106–130.

    Article  PubMed  Google Scholar 

  • Kimura K, Markowski M, Bowen C, Gelmann EP . (2001). Androgen blocks apoptosis of hormone-dependent prostate cancer cells. Cancer Res 61: 5611–5618.

    CAS  PubMed  Google Scholar 

  • Krueger A, Schmitz I, Baumann S, Krammer PH, Kirchhoff S . (2001). Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem 276: 20633–20640.

    Article  CAS  PubMed  Google Scholar 

  • Kyprianou N, Isaacs JT . (1988). Activation of programmed cell death in the rat ventral prostate after castration. Endocrinology 122: 552–562.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI et al. (1997). PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275: 1943–1947.

    Article  CAS  PubMed  Google Scholar 

  • Li P, Lee H, Guo S, Unterman TG, Jenster G, Bai W . (2003). AKT-independent protection of prostate cancer cells from apoptosis mediated through complex formation between the androgen receptor and FKHR. Mol Cell Biol 23: 104–118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li P, Nicosia SV, Bai W . (2001). Antagonism between PTEN/MMAC1/TEP-1 and androgen receptor in growth and apoptosis of prostatic cancer cells. J Biol Chem 276: 20444–20450.

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Grobholz R, Abel U, Trojan L, Michel MS, Angel P et al. (2003). Increase of AKT/PKB expression correlates with gleason pattern in human prostate cancer. Int J Cancer 107: 676–680.

    Article  CAS  PubMed  Google Scholar 

  • Longley DB, Wilson TR, McEwan M, Allen WL, McDermott U, Galligan L et al. (2006). c-FLIP inhibits chemotherapy-induced colorectal cancer cell death. Oncogene 25: 838–848.

    Article  CAS  PubMed  Google Scholar 

  • Lynch RL, Konicek BW, McNulty AM, Hanna KR, Lewis JE, Neubauer BL et al. (2005). The progression of LNCaP human prostate cancer cells to androgen independence involves decreased FOXO3a expression and reduced p27KIP1 promoter transactivation. Mol Cancer Res 3: 163–169.

    Article  CAS  PubMed  Google Scholar 

  • Majumder PK, Sellers WR . (2005). Akt-regulated pathways in prostate cancer. Oncogene 24: 7465–7474.

    Article  CAS  PubMed  Google Scholar 

  • Marti A, Jaggi R, Vallan C, Ritter PM, Baltzer A, Srinivasan A et al. (1999). Physiological apoptosis in hormone-dependent tissues: involvement of caspases. Cell Death Differ 6: 1190–1200.

    Article  CAS  PubMed  Google Scholar 

  • Martikainen P, Kyprianou N, Isaacs JT . (1990). Effect of transforming growth factor-beta 1 on proliferation and death of rat prostatic cells. Endocrinology 127: 2963–2968.

    Article  CAS  PubMed  Google Scholar 

  • Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R et al. (2003). TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31: 374–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nastiuk KL, Kim JW, Mann M, Krolewski JJ . (2003). Androgen regulation of FLICE-like inhibitory protein gene expression in the rat prostate. J Cell Physiol 196: 386–393.

    Article  CAS  PubMed  Google Scholar 

  • Nesterov A, Ivashchenko Y, Kraft AS . (2002). Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis in normal prostate epithelial cells. Oncogene 21: 1135–1140.

    Article  CAS  PubMed  Google Scholar 

  • Nesterov A, Lu X, Johnson M, Miller GJ, Ivashchenko Y, Kraft AS . (2001). Elevated AKT activity protects the prostate cancer cell line LNCaP from TRAIL-induced apoptosis. J Biol Chem 276: 10767–10774.

    Article  CAS  PubMed  Google Scholar 

  • Panka DJ, Mano T, Suhara T, Walsh K, Mier JW . (2001). Phosphatidylinositol 3-kinase/Akt activity regulates c-FLIP expression in tumor cells. J Biol Chem 276: 6893–6896.

    Article  CAS  PubMed  Google Scholar 

  • Roth W, Reed JC . (2004). FLIP protein and TRAIL-induced apoptosis. Vitam Horm 67: 189–206.

    Article  CAS  PubMed  Google Scholar 

  • Shaw G, Morse S, Ararat M, Graham FL . (2002). Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J 16: 869–871.

    Article  CAS  PubMed  Google Scholar 

  • Skurk C, Maatz H, Kim HS, Yang J, Abid MR, Aird WC et al. (2004). The Akt-regulated forkhead transcription factor FOXO3a controls endothelial cell viability through modulation of the caspase-8 inhibitor FLIP. J Biol Chem 279: 1513–1525.

    Article  CAS  PubMed  Google Scholar 

  • Srikanth S, Kraft AS . (1998). Inhibition of caspases by cytokine response modifier A blocks androgen ablation-mediated prostate cancer cell death in vivo. Cancer Res 58: 834–839.

    CAS  PubMed  Google Scholar 

  • Sugihara A, Yamada N, Tsujimura T, Iwasaki T, Yamashita K, Takagi Y et al. (2001). Castration induces apoptosis in the male accessory sex organs of Fas-deficient lpr and Fas ligand-deficient gld mutant mice. In vivo 15: 385–390.

    CAS  PubMed  Google Scholar 

  • Suzuki A, Matsuzawa A, Iguchi T . (1996). Down regulation of Bcl-2 is the first step on Fas-mediated apoptosis of male reproductive tract. Oncogene 13: 31–37.

    CAS  PubMed  Google Scholar 

  • Tang ED, Nunez G, Barr FG, Guan KL . (1999). Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem 274: 16741–16746.

    Article  CAS  PubMed  Google Scholar 

  • Yuan XJ, Whang YE . (2002). PTEN sensitizes prostate cancer cells to death receptor-mediated and drug-induced apoptosis through a FADD-dependent pathway. Oncogene 21: 319–327.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Jin TG, Yang H, DeWolf WC, Khosravi-Far R, Olumi AF . (2004). Persistent c-FLIP(L) expression is necessary and sufficient to maintain resistance to tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in prostate cancer. Cancer Res 64: 7086–7091.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grant PC030937 from the US Army Prostate Cancer Research Program. ANC was supported by a PHS training grant (5T32CA009054). We thank D Fruman, R Miesfeld, K Guan and M Greenberg for plasmids, and C Walsh and D Fruman for assistance with FACS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J J Krolewski.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornforth, A., Davis, J., Khanifar, E. et al. FOXO3a mediates the androgen-dependent regulation of FLIP and contributes to TRAIL-induced apoptosis of LNCaP cells. Oncogene 27, 4422–4433 (2008). https://doi.org/10.1038/onc.2008.80

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.80

Keywords

This article is cited by

Search

Quick links