Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ATM mediates constitutive NF-κB activation in high-risk myelodysplastic syndrome and acute myeloid leukemia

Abstract

The anti-apoptotic transcription factor nuclear factor-κB (NF-κB) is constitutively activated in CD34+ myeloblasts from high-risk myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) patients. Inhibition of NF-κB by suppressing the canonical NF-κB activation pathway, for instance by knockdown of the three subunits of the inhibitor of NF-κB (IκB) kinase (IKK) complex (IKK1, IKK2 and NEMO) triggers apoptosis in such cells. Here, we show that an MDS/AML model cell line exhibits a constitutive interaction, within the nucleus, of activated, S1981-phosphorylated ataxia telangiectasia mutated (ATM) with NEMO. Inhibition of ATM with two distinct pharmacological inhibitors suppressed the activating autophosphorylation of ATM, blocked the interaction of ATM and NEMO, delocalized NEMO as well as another putative NF-κB activator, PIDD, from the nucleus, abolished the activating phosphorylation of the catalytic proteins of the IKK complex (IKK1/2 on serines 176/180), enhanced the expression of IκBα and caused the relocalization of NF-κB from the nucleus to the cytoplasm, followed by apoptosis. Knockdown of ATM with small-interfering RNAs had a similar effect that could not be enhanced by knockdown of NEMO, PIDD and the p65 NF-κB subunit, suggesting that an ATM inhibition/depletion truly induced apoptosis through inhibition of the NF-κB system. Pharmacological inhibition of ATM also induced the nucleocytoplasmic relocalization of p65 in malignant myeloblasts purified from patients with high-risk MDS or AML, correlating with the induction of apoptosis. Altogether, these results support the contention that constitutively active ATM accounts for the activation of NF-κB in high-risk MDS and AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

AML:

acute myeloid leukemia

BM-MNC:

bone marrow mononuclear cells

DAPI:

4′,6-diamidino-2-phenylindole

DiOC6(3):

3,3′ dihexyloxacarbocyanine iodide

IκB:

inhibitor of NF-κB

IKK:

IκB kinase

MDS:

myelodysplastic syndrome

NF-κB:

nuclear factor-κB

PI:

propidium iodide

References

  • Bakkenist CJ, Kastan MB . (2004). Phosphatases join kinases in DNA-damage response pathways. Trends Cell Biol 14: 339–341.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Bakkenist CJ, Rajpert-De Meyts E, Skakkebaek NE, Sehested M, Lukas J et al. (2005a). ATM activation in normal human tissues and testicular cancer. Cell Cycle 4: 838–845.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. (2005b). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870.

    Article  CAS  PubMed  Google Scholar 

  • Barzilai A, Yamamoto K . (2004). DNA damage responses to oxidative stress. DNA Repair (Amst) 3: 1109–1115.

    Article  CAS  Google Scholar 

  • Bennett JM . (2000). World Health Organization classification of the acute leukemias and myelodysplastic syndrome. Int J Hematol 72: 131–133.

    CAS  PubMed  Google Scholar 

  • Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. (1976). Proposals for the classification of the acute leukaemias. French–American–British (FAB) co-operative group. Br J Haematol 33: 451–458.

    Article  CAS  PubMed  Google Scholar 

  • Birkenkamp KU, Geugien M, Schepers H, Westra J, Lemmink HH, Vellenga E . (2004). Constitutive NF-kappaB DNA-binding activity in AML is frequently mediated by a Ras/PI3-K/PKB-dependent pathway. Leukemia 18: 103–112.

    Article  CAS  PubMed  Google Scholar 

  • Bonizzi G, Karin M . (2004). The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25: 280–288.

    Article  CAS  PubMed  Google Scholar 

  • Braun T, Carvalho G, Coquelle A, Vozenin MC, Lepelley P, Hirsch F et al. (2006a). NF-kappaB constitutes a potential therapeutic target in high-risk myelodysplastic syndrome. Blood 107: 1156–1165.

    Article  CAS  PubMed  Google Scholar 

  • Braun T, Carvalho G, Fabre C, Grosjean J, Fenaux P, Kroemer G . (2006b). Targeting NF-kappaB in hematologic malignancies. Cell Death Differ 13: 748–758.

    Article  CAS  PubMed  Google Scholar 

  • Campbell KJ, Rocha S, Perkins ND . (2004). Active repression of antiapoptotic gene expression by RelA(p65) NF-kappa B. Mol Cell 13: 853–865.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho G, Fabre C, Braun T, Grosjean J, Ades L, Agou F et al. (2007). Inhibition of NEMO, the regulatory subunit of the IKK complex, induces apoptosis in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene 26: 2299–2307.

    Article  CAS  PubMed  Google Scholar 

  • Castedo M, Hirsch T, Susin SA, Zamzami N, Marchetti P, Macho A et al. (1996). Sequential acquisition of mitochondrial and plasma membrane alterations during early lymphocyte apoptosis. J Immunol 157: 512–521.

    CAS  PubMed  Google Scholar 

  • Castedo M, Perfettini JL, Kroemer G . (2002). Mitochondrial apoptosis and the peripheral benzodiazepine receptor: a novel target for viral and pharmacological manipulation. J Exp Med 196: 1121–1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabre C, Carvalho G, Tasdemir E, Braun T, Ades L, Grosjean J et al. (2007). NF-kappaB inhibition sensitizes to starvation-induced cell death in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene 26: 4071–4083.

    Article  CAS  PubMed  Google Scholar 

  • Gale RE, Green C, Allen C, Mead AJ, Burnett AK, Hills RK et al. (2008). The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood 111: 2776–2784.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Karin M . (2002). Missing pieces in the NF-kappaB puzzle. Cell 109 (Suppl): S81–S96.

    Article  CAS  PubMed  Google Scholar 

  • Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G et al. (1997). International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89: 2079–2088.

    CAS  PubMed  Google Scholar 

  • Greten FR, Karin M . (2004). The IKK/NF-kappaB activation pathway-a target for prevention and treatment of cancer. Cancer Lett 206: 193–199.

    Article  CAS  PubMed  Google Scholar 

  • Grosjean-Raillard J, Ades L, Boehrer S, Tailler M, Fabre C, Braun T et al. (2008). Flt3 receptor inhibition reduces constitutive NFkappaB activation in high-risk myelodysplastic syndrome and acute myeloid leukemia. Apoptosis 13: 1148–1161.

    Article  CAS  PubMed  Google Scholar 

  • Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA et al. (2001). Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98: 2301–2307.

    Article  CAS  PubMed  Google Scholar 

  • Habraken Y, Piette J . (2006). NF-kappaB activation by double-strand breaks. Biochem Pharmacol 72: 1132–1141.

    Article  CAS  PubMed  Google Scholar 

  • Halazonetis TD, Gorgoulis VG, Bartek J . (2008). An oncogene-induced DNA damage model for cancer development. Science 319: 1352–1355.

    Article  CAS  PubMed  Google Scholar 

  • Hassan Z, Fadeel B, Zhivotovsky B, Hellstrom-Lindberg E . (1999). Two pathways of apoptosis induced with all-trans retinoic acid and etoposide in the myeloid cell line P39. Exp Hematol 27: 1322–1329.

    Article  CAS  PubMed  Google Scholar 

  • Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NM, Orr AI et al. (2004). Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 64: 9152–9159.

    Article  CAS  PubMed  Google Scholar 

  • Huang TT, Wuerzberger-Davis SM, Wu ZH, Miyamoto S . (2003). Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 115: 565–576.

    Article  CAS  PubMed  Google Scholar 

  • Janssens S, Tinel A, Lippens S, Tschopp J . (2005). PIDD mediates NF-kappaB activation in response to DNA damage. Cell 123: 1079–1092.

    Article  CAS  PubMed  Google Scholar 

  • Karin M, Yamamoto Y, Wang QM . (2004). The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 3: 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Knapper S . (2007). FLT3 inhibition in acute myeloid leukaemia. Br J Haematol 138: 687–699.

    Article  CAS  PubMed  Google Scholar 

  • Leone G, Pagano L, Ben-Yehuda D, Voso MT . (2007). Therapy-related leukemia and myelodysplasia: susceptibility and incidence. Haematologica 92: 1389–1398.

    Article  CAS  PubMed  Google Scholar 

  • Li N, Banin S, Ouyang H, Li GC, Courtois G, Shiloh Y et al. (2001). ATM is required for IkappaB kinase (IKK) activation in response to DNA double strand breaks. J Biol Chem 276: 8898–8903.

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Ramamurthi K, Mishima M, Kondo A, Howell SB . (2000a). p53 interacts with the DNA mismatch repair system to modulate the cytotoxicity and mutagenicity of hydrogen peroxide. Mol Pharmacol 58: 1222–1229.

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Ma W, Benchimol S . (2000b). Pidd, a new death-domain-containing protein, is induced by p53 and promotes apoptosis. Nat Genet 26: 122–127.

    Article  CAS  PubMed  Google Scholar 

  • Metivier D, Dallaporta B, Zamzami N, Larochette N, Susin SA, Marzo I et al. (1998). Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-1-triggered apoptosis of Jurkat T lymphoma cells. Comparison of seven mitochondrion-specific fluorochromes. Immunol Lett 61: 157–163.

    Article  CAS  PubMed  Google Scholar 

  • Mufti G, List AF, Gore SD, Ho AY . (2003). Myelodysplastic syndrome. Hematology Am Soc Hematol Educ Program 2003: 176–199.

    Article  Google Scholar 

  • Rajkumar SV, Richardson PG, Hideshima T, Anderson KC . (2005). Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 23: 630–639.

    Article  CAS  PubMed  Google Scholar 

  • Tinel A, Tschopp J . (2004). The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 304: 843–846.

    Article  CAS  PubMed  Google Scholar 

  • Vardiman JW, Harris NL, Brunning RD . (2002). The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 100: 2292–2302.

    Article  CAS  PubMed  Google Scholar 

  • Wu ZH, Shi Y, Tibbetts RS, Miyamoto S . (2006). Molecular linkage between the kinase ATM and NF-kappaB signaling in response to genotoxic stimuli. Science 311: 1141–1146.

    Article  CAS  PubMed  Google Scholar 

  • Yanada M, Matsuo K, Suzuki T, Kiyoi H, Naoe T . (2005). Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a meta-analysis. Leukemia 19: 1345–1349.

    Article  CAS  PubMed  Google Scholar 

  • Zamzami N, Kroemer G . (2004). Methods to measure membrane potential and permeability transition in the mitochondria during apoptosis. Methods Mol Biol 282: 103–115.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Jalil Abdelali (Institut Gustave Roussy, Villejuif, France) for technical support in confocal microscopy. Guido Kroemer is supported by the Agence Nationale de Recherche, Fondation de France, Cent pour Sang la Vie, Cancéropôle Ile-de-France, Institut National du Cancer, Ligue Nationale contre le Cancer and the European Community (Active p53, Apo-Sy, Apop-Train, TransDeath, RIGHT, ChemoRes). Jennifer Grosjean received a postdoctoral fellowship by Cancéropôle Ile-de-France. Lionel Adès received a scholarship from Assistance Publique-Hopitaux de Paris and Caisse Nationale d’Assurance Maladie des Professions Indépendantes. Claire Fabre received a scholarship from Fondation pour la Recherche Médicale. Maximilien Tailler received a PhD fellowship from Université Paris Sud, Paris 11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Kroemer.

Additional information

Author contributions

JG-R and MT performed the experiments and analysed the data. LA, CF, TB and SDB provided BM samples and essential clinical information on patients. AI and PF participated in the conception of the study. GK conceived and directed the study. JG-R and GK wrote the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grosjean-Raillard, J., Tailler, M., Adès, L. et al. ATM mediates constitutive NF-κB activation in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene 28, 1099–1109 (2009). https://doi.org/10.1038/onc.2008.457

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.457

Keywords

This article is cited by

Search

Quick links