Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A single-codon mutation converts HPV16 E6 oncoprotein into a potential tumor suppressor, which induces p53-dependent senescence of HPV-positive HeLa cervical cancer cells

Abstract

High-risk mucosal human papillomaviruses (HPV), mainly HPV16 and HPV18, are implicated in cervical carcinogenesis. HPV16 E6 oncoprotein binds and often targets for degradation numerous cell proteins, including the tumor suppressor p53 and several PDZ domain proteins. Here, we show that a single-point mutation, F47R, is sufficient to convert the HPV16 E6 oncoprotein into a suppressor of HPV-positive HeLa cervical cancer cells proliferation. The E6 F47R mutant is defective for polyubiquitination and subsequent degradation of p53. When expressed in HPV-positive cervical cancer cells, E6 F47R acts as a dominant negative mutant by counteracting the p53 degradation activity of endogenous E6 and restoring high p53 protein levels. Moreover, the prolonged expression of E6 F47R leads to suppression of HeLa cells proliferation through the induction of premature senescence. This phenotype is independent on the PDZ-binding activity of E6. F47R-senescent HeLa cells exhibit a sustained expression of p53, hMDM2 and p21CIP proteins and a reduced expression of endogenous HPV18 E6 protein. Finally, small interfering RNAs directed against p53 counteract the effect of E6 F47R expression, indicating that E6 F47R-induced cellular senescence is strongly dependent on p53 signaling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bernard B, Pretet JL, Charlot JF, Mougin C . (2003). Human papillomaviruses type 16+ and 18+ cervical carcinoma cells are sensitive to staurosporine-mediated apoptosis. Biol Cell 95: 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Butz K, Ristriani T, Hengstermann A, Denk C, Scheffner M, Hoppe-Seyler F . (2003). siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. Oncogene 22: 5938–5945.

    Article  CAS  PubMed  Google Scholar 

  • Courtete J, Sibler AP, Zeder-Lutz G, Dalkara D, Oulad-Abdelghani M, Zuber G et al. (2007). Suppression of cervical carcinoma cell growth by intracytoplasmic codelivery of anti-oncoprotein E6 antibody and small interfering RNA. Mol Cancer Ther 6: 1728–1735.

    Article  CAS  PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92: 9363–9367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin H, Elston R, Jackson D, Ansell K, Coleman M, Winter G et al. (2006). Inhibition of papillomavirus protein function in cervical cancer cells by intrabody targeting. J Mol Biol 355: 360–378.

    Article  CAS  PubMed  Google Scholar 

  • Hall AH, Alexander KA . (2003). RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells. J Virol 77: 6066–6069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horner SM, DeFilippis RA, Manuelidis L, DiMaio D . (2004). Repression of the human papillomavirus E6 gene initiates p53-dependent, telomerase-independent senescence and apoptosis in HeLa cervical carcinoma cells. J Virol 78: 4063–4073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huibregtse JM, Scheffner M, Howley PM . (1991). A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J 10: 4129–4135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johung K, Goodwin EC, DiMaio D . (2007). Human papillomavirus E7 repression in cervical carcinoma cells initiates a transcriptional cascade driven by the retinoblastoma family, resulting in senescence. J Virol 81: 2102–2116.

    Article  CAS  PubMed  Google Scholar 

  • Lagrange M, Boulade-Ladame C, Mailly L, Weiss E, Orfanoudakis G, Deryckere F . (2007). Intracellular scFvs against the viral E6 oncoprotein provoke apoptosis in human papillomavirus-positive cancer cells. Biochem Biophys Res Commun 361: 487–492.

    Article  CAS  PubMed  Google Scholar 

  • Lee CJ, Suh EJ, Kang HT, Im JS, Um SJ, Park JS et al. (2002). Induction of senescence-like state and suppression of telomerase activity through inhibition of HPV E6/E7 gene expression in cells immortalized by HPV16 DNA. Exp Cell Res 277: 173–182.

    Article  CAS  PubMed  Google Scholar 

  • Lipari F, McGibbon GA, Wardrop E, Cordingley MG . (2001). Purification and biophysical characterization of a minimal functional domain and of an N-terminal Zn2+-binding fragment from the human papillomavirus type 16 E6 protein. Biochemistry 40: 1196–1204.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chen JJ, Gao Q, Dalal S, Hong Y, Mansur CP et al. (1999). Multiple functions of human papillomavirus type 16 E6 contribute to the immortalization of mammary epithelial cells. J Virol 73: 7297–7307.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD . (2001). Analysis of relative gene expression data using real time quantitative PCR and the 2(−Delta Delta CT) method. Methods 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Massimi P, Gammoh N, Thomas M, Banks L . (2004). HPV E6 specifically targets different cellular pools of its PDZ domain-containing tumour suppressor substrates for proteasome-mediated degradation. Oncogene 23: 8033–8039.

    Article  CAS  PubMed  Google Scholar 

  • Masson M, Hindelang C, Sibler AP, Schwalbach G, Trave G, Weiss E . (2003). Preferential nuclear localization of the human papillomavirus type 16 E6 oncoprotein in cervical carcinoma cells. J Gen Virol 84: 2099–2104.

    Article  CAS  PubMed  Google Scholar 

  • Nominé Y, Charbonnier S, Ristriani T, Stier G, Masson M, Cavusoglu N et al. (2003). Domain substructure of HPV E6 oncoprotein: biophysical characterization of the E6 C-terminal DNA-binding domain. Biochemistry 42: 4909–4917.

    Article  PubMed  Google Scholar 

  • Nominé Y, Masson M, Charbonnier S, Zanier K, Ristriani T, Deryckere F et al. (2006). Structural and functional analysis of E6 oncoprotein: insights in the molecular pathways of human papillomavirus-mediated pathogenesis. Mol Cell 21: 665–678.

    Article  PubMed  Google Scholar 

  • Nominé Y, Ristriani T, Laurent C, Lefevre JF, Weiss E, Trave G . (2001a). A strategy for optimizing the diversity of fusion proteins: application to purification of recombinant HPV E6 oncoprotein. Protein Eng 14: 297–305.

    Article  PubMed  Google Scholar 

  • Nominé Y, Ristriani T, Laurent C, Lefevre JF, Weiss E, Trave G . (2001b). Formation of soluble inclusion bodies by HPV E6 oncoprotein fused to maltose-binding protein. Protein Exp Purif 23: 22–32.

    Article  Google Scholar 

  • Ristriani T, Masson M, Nominé Y, Laurent C, Lefevre JF, Weiss E et al. (2000). HPV oncoprotein E6 is a structure-dependent DNA-binding protein that recognizes four-way junctions. J Mol Biol 296: 1189–1203.

    Article  CAS  PubMed  Google Scholar 

  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM . (1990). The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63: 1129–1136.

    Article  CAS  PubMed  Google Scholar 

  • Stewart D, Kazemi S, Li S, Massimi P, Banks L, Koromilas AE et al. (2004). Ubiquitination and proteasome degradation of the E6 proteins of human papillomavirus type 11 and 18. J Gen Virol 85: 1419–1426.

    Article  CAS  PubMed  Google Scholar 

  • Talis AL, Huibregtse JM, Howley PM . (1998). The role of E6AP in the regulation of p53 protein levels in human papillomavirus (HPV)-positive and HPV-negative cells. J Biol Chem 273: 6439–6445.

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Mingfang T, McCoy P, Zheng ZM . (2006). The E7 oncoprotein is translated from spliced E6* transcripts in high-risk human papillomavirus type-16 or type-18 positive cervical cancer cell lines via translation reinitiation. J Virol 80: 4249–4263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Töpffer S, Müller-Schiffmann A, Matentzoglu K, Scheffner M, Steger G . (2007). Protein tyrosine phosphatase H1 is a target of the E6 oncoprotein of high-risk genital human paillomaviruses. J Gen Virol 88: 2956–2965.

    Article  PubMed  Google Scholar 

  • Veldman T, Horikawa I, Barrett JC, Schlegel R . (2001). Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J Virol 75: 4467–4472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vousden K . (1993). Interactions of human papillomavirus transforming proteins with the products of tumor suppressor genes. FASEB J 7: 872–879.

    Article  CAS  PubMed  Google Scholar 

  • Wells SI, Francis DA, Karpova AY, Dowhanick JJ, Benson JD, Howley PM . (2000). Papillomavirus E2 induces senescence in HPV-positive cells via pRB- and p21(CIP)-dependent pathways. EMBO J 19: 5762–5771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanier K, Nominé Y, Charbonnier S, Ruhlmann C, Schultz P, Schweizer J et al. (2007). Formation of well-defined soluble aggregates upon fusion to MBP is a generic property of E6 proteins from various human papillomavirus species. Protein Expr Purif 51: 59–70.

    Article  CAS  PubMed  Google Scholar 

  • zur Hausen H . (1996). Papillomavirus infections—a major cause of human cancers. Biochim Biophys Acta 1288: F55–F78.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank F Hoppe-Seyler for providing HeLa cells, H Zentgraf for the antibody 18E7C, G de Murcia for the PARP antibody and Arbor Vita Corp. (USA) for the HPV18 E6 antibody. We thank E Weiss, A-P Sibler, A-S Rinaldi and B Chatton for helpful discussions. This study was supported by the University of Strasbourg, CNRS, Association de Recherche contre le Cancer (ARC), Ligue Nationale Contre le Cancer. TR and SF were supported by the Canceropôle Grand-EST (INCA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G Travé or M Masson.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ristriani, T., Fournane, S., Orfanoudakis, G. et al. A single-codon mutation converts HPV16 E6 oncoprotein into a potential tumor suppressor, which induces p53-dependent senescence of HPV-positive HeLa cervical cancer cells. Oncogene 28, 762–772 (2009). https://doi.org/10.1038/onc.2008.422

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.422

Keywords

Search

Quick links