Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sensitization of melanoma cells to TRAIL by UVB-induced and NF-κB-mediated downregulation of xIAP

Abstract

Effective treatment of malignant melanoma with the tumor-selective death ligand tumor necrosis-related apoptosis-inducing ligand (TRAIL) is curtailed by the fact that many melanoma cell lines are a priori resistant against TRAIL-induced apoptosis. By investigating 18 melanoma cell lines, we show that TRAIL susceptibility is completely independent of the tumor progression stage but can be positively stimulated by co-exposure to a sublethal ultraviolet B light (UVB) dose, providing an excellent tool to study the mechanism underlying TRAIL resistance. TRAIL resistance could be linked to the ratio of x-linked inhibitor of apoptosis proteins (xIAP) and caspase-3 levels within the cell. UVB-induced sensitization coincides with enhanced xIAP degradation, allowing full caspase-3 processing and activation. It is also accompanied by concomitant IκBα degradation, resulting in nuclear factor-κB (NF-κB)-dependent transcriptional repression of xIAP. Loss of xIAP in turn was reduced upon overexpression of an IκBα super-repressor, thus NF-κB activation seems to be responsible for differential regulation of xIAP and consequently determines TRAIL susceptibility. As xIAP-mediated blockade of apoptosis seems to be the dominant cause of TRAIL resistance of all melanoma cell lines investigated here, our data suggest that direct chemical xIAP inhibition or combination treatment with DNA-damaging agents may offer new therapeutic strategies to generally sensitize melanoma toward TRAIL-induced apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Amiri KI, Richmond A . (2005). Role of nuclear factor-kappa B in melanoma. Cancer Metastasis Rev 24: 301–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouralexis S, Findlay DM, Atkins GJ, Labrinidis A, Hay S, Evdokiou A . (2003). Progressive resistance of BKT-143 osteosarcoma cells to Apo2L/TRAIL-induced apoptosis is mediated by acquisition of DcR2/TRAIL4 expression: resensitization with chemotherapy. Br J Cancer 89: 206–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bullani RR, Huard B, Viard-Leveugle I, Byers HR, Irmler M, Saurat JH et al. (2001). Selective expression of FLIP in malignant melanocytic skin lesions. J Invest Dermatol 117: 360–364.

    Article  CAS  PubMed  Google Scholar 

  • Campbell KJ, Rocha S, Perkins ND . (2004). Active repression of antiapoptotic gene expression by RelA(p65) NF-kappaB. Mol Cell 13: 853–865.

    Article  CAS  PubMed  Google Scholar 

  • Chawla-Sarkar M, Bae SI, Reu FJ, Jacobs BS, Lindner DJ, Borden EC . (2004). Downregulation of Bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to APO2L/TRAIL-induced apoptosis. Cell Death Differ 11: 915–923.

    Article  CAS  PubMed  Google Scholar 

  • Cheung HH, Plenchette S, Kern CJ, Mahoney DJ, Korneluk RG . (2008). The RING domain of cIAP1 mediates the degradation of RING-bearing inhibitor of apoptosis proteins by distinct pathways. Mol Biol Cell 19: 2729–2740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark Jr WH . (1991). Human cutaneous malignant melanoma as a model for cancer. Cancer Metastasis Rev 10: 83–88.

    Article  PubMed  Google Scholar 

  • Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG . (1997a). The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 7: 813–820.

    Article  CAS  PubMed  Google Scholar 

  • Degli-Esposti MA, Smolak PJ, Walczak H, Waugh J, Huang CP, DuBose RF et al. (1997b). Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med 186: 1165–1170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delhase M, Hayakawa M, Chen Y, Karin M . (1999). Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science 284: 309–313.

    Article  CAS  PubMed  Google Scholar 

  • Dohi T, Okada K, Xia F, Wilford CE, Samuel T, Welsh K et al. (2004). An IAP–IAP complex inhibits apoptosis. J Biol Chem 279: 34087–34090.

    Article  CAS  PubMed  Google Scholar 

  • Eckelman BP, Salvesen GS, Scott FL . (2006). Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 7: 988–994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrhardt H, Fulda S, Schmid I, Hiscott J, Debatin KM, Jeremias I . (2003). TRAIL induced survival and proliferation in cancer cells resistant towards TRAIL-induced apoptosis mediated by NF-kappaB. Oncogene 22: 3842–3852.

    Article  CAS  PubMed  Google Scholar 

  • Elder DE, Clark Jr WH, Elenitsas R, Guerry D, Halpern AC . (1993). The early and intermediate precursor lesions of tumor progression in the melanocytic system: common acquired nevi and atypical (dysplastic) nevi. Semin Diagn Pathol 10: 18–35.

    CAS  PubMed  Google Scholar 

  • Falschlehner C, Emmerich CH, Gerlach B, Walczak H . (2007). TRAIL signalling: decisions between life and death. Int J Biochem Cell Biol 39: 1462–1475.

    Article  CAS  PubMed  Google Scholar 

  • Flaherty KT . (2006). Chemotherapy and targeted therapy combinations in advanced melanoma. Clin Cancer Res 12: 2366s–2370s.

    Article  CAS  PubMed  Google Scholar 

  • Franco AV, Zhang XD, Van Berkel E, Sanders JE, Zhang XY, Thomas WD et al. (2001). The role of NF-kappa B in TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of melanoma cells. J Immunol 166: 5337–5345.

    Article  CAS  PubMed  Google Scholar 

  • Ganten TM, Koschny R, Sykora J, Schulze-Bergkamen H, Buchler P, Haas TL et al. (2006). Preclinical differentiation between apparently safe and potentially hepatotoxic applications of TRAIL either alone or in combination with chemotherapeutic drugs. Clin Cancer Res 12: 2640–2646.

    Article  CAS  PubMed  Google Scholar 

  • Geserick P, Drewniok C, Hupe M, Haas TL, Diessenbacher P, Sprick MR et al. (2007). Suppression of cFLIP is sufficient to sensitize human melanoma cell to TRAIL- and CD95L-mediated apoptosis. Oncogene 27: 3211–3220.

    Article  PubMed  Google Scholar 

  • Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ . (1998). Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 161: 2833–2840.

    CAS  PubMed  Google Scholar 

  • Jeremias I, Debatin KM . (1998). TRAIL induces apoptosis and activation of NFkappaB. Eur Cytokine Netw 9: 687–688.

    CAS  PubMed  Google Scholar 

  • Kashkar H, Deggerich A, Seeger JM, Yazdanpanah B, Wiegmann K, Haubert D et al. (2007). NF-kappaB-independent down-regulation of XIAP by bortezomib sensitizes HL B cells against cytotoxic drugs. Blood 109: 3982–3988.

    Article  CAS  PubMed  Google Scholar 

  • Kashkar H, Haefs C, Shin H, Hamilton-Dutoit SJ, Salvesen GS, Krönke M et al. (2003). XIAP-mediated caspase inhibition in Hodgkin's lymphoma-derived B cells. J Exp Med 198: 341–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koschny R, Walczak H, Ganten TM . (2007). The promise of TRAIL—potential and risks of a novel anticancer therapy. J Mol Med 85: 923–935.

    Article  CAS  PubMed  Google Scholar 

  • Kothny-Wilkes G, Kulms D, Pöppelmann B, Luger TA, Kubin M, Schwarz T . (1998). Interleukin-1 protects transformed keratinocytes from tumor necrosis factor-related apoptosis-inducing ligand. J Biol Chem 273: 29247–29253.

    Article  CAS  PubMed  Google Scholar 

  • Kurbanov BM, Geilen CC, Fecker LF, Orfanos CE, Eberle J . (2005). Efficient TRAIL-R1/DR4-mediated apoptosis in melanoma cells by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Invest Dermatol 125: 1010–1019.

    Article  CAS  PubMed  Google Scholar 

  • Larribere L, Khaled M, Tartare-Deckert S, Busca R, Luciano F, Bille K et al. (2004). PI3K mediates protection against TRAIL-induced apoptosis in primary human melanocytes. Cell Death Differ 11: 1084–1091.

    Article  CAS  PubMed  Google Scholar 

  • Lasithiotakis KG, Leiter U, Gorkievicz R, Eigentler T, Breuninger H, Metzler G et al. (2006). The incidence and mortality of cutaneous melanoma in Southern Germany: trends by anatomic site and pathologic characteristics: 1076-2003. Cancer 107: 1331–1339.

    Article  PubMed  Google Scholar 

  • Li Q, Verma IM . (2002). NF-kappaB regulation in the immune system. Nat Rev Immunol 2: 725–734.

    Article  CAS  PubMed  Google Scholar 

  • Meier F, Satyamoorthy K, Nesbit M, Hsu MY, Schittek B, Garbe C et al. (1998). Molecular events in melanoma development and progression. Front Biosci 3: D1005–D1010.

    Article  CAS  PubMed  Google Scholar 

  • Meier F, Schittek B, Busch S, Garbe C, Smalley K, Satyamoorthy K et al. (2005). The RAS/RAF/MEK/ERK and PI3K/AKT signalling pathways present molecular targets for the effective treatment of advanced melanoma. Front Biosci 10: 2986–3001.

    Article  CAS  PubMed  Google Scholar 

  • Merino D, Lalaoui N, Morizot A, Schneider P, Solary E, Micheau O . (2006). Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2. Mol Cell Biol 26: 7046–7055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merino D, Lalaoui N, Morizot A, Solary E, Micheau O . (2007). TRAIL in cancer therapy: present and future challenges. Expert Opin Ther Targets 11: 1299–1314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J . (2001). NF-kappaB signals induce the expression of c-FLIP. Mol Cell Biol 21: 5299–5305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micheau O, Merino D . (2004). Controlling TRAIL-mediated caspase-3 activation. Leukemia 18: 1578–1580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micheau O, Thome M, Schneider P, Holler N, Tschopp J, Nicholson DW et al. (2002). The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem 277: 45162–45171.

    Article  CAS  PubMed  Google Scholar 

  • Panner A, James CD, Berger MS, Pieper RO . (2005). mTOR controls FLIPS translation and TRAIL sensitivity in glioblastoma multiforme cells. Mol Cell Biol 25: 8809–8823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A . (1996). Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271: 12687–12690.

    Article  CAS  PubMed  Google Scholar 

  • Pöppelmann B, Klimmek K, Strozyk E, Voss R, Schwarz T, Kulms D . (2005). NFκB-dependent down-regulation of tumor necrosis factor receptor-associated proteins contributes to interleukin-1-mediated enhancement of UVB-induced apoptosis. J Biol Chem 280: 15635–15643.

    Article  PubMed  Google Scholar 

  • Ricci MS, Jin Z, Dews M, Yu D, Thomas-Tikhonenko A, Dicker DT et al. (2004). Direct repression of FLIP expression by c-myc is a major determinant of TRAIL sensitivity. Mol Cell Biol 24: 8541–8555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riccioni R, Pasquini L, Mariani G, Saulle E, Rossini A, Diverio D et al. (2005). TRAIL decoy receptors mediate resistance of acute myeloid leukemia cells to TRAIL. Haematologica 90: 612–624.

    CAS  PubMed  Google Scholar 

  • Shi RX, Ong CN, Shen HM . (2005). Protein kinase C inhibition and x-linked inhibitor of apoptosis protein degradation contribute to the sensitization effect of luteolin on tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in cancer cells. Cancer Res 65: 7815–7823.

    Article  CAS  PubMed  Google Scholar 

  • Sohn D, Totzke G, Essmann F, Schulze-Osthoff K, Levkau B, Janicke RU . (2006). The proteasome is required for rapid initiation of death receptor-induced apoptosis. Mol Cell Biol 26: 1967–1978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprick MR, Weigand MA, Rieser E, Rauch CT, Juo P, Blenis J et al. (2000). FADD/MORT1 and caspase-8 are recruited to TRAIL receptor 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12: 599–609.

    Article  CAS  PubMed  Google Scholar 

  • Strozyk E, Pöppelmann B, Schwarz T, Kulms D . (2006). Differential effects of NF-kappaB on apoptosis induced by DNA-damaging agents: The type of DNA damage determines the final outcome. Oncogene 25: 6239–6251.

    Article  CAS  PubMed  Google Scholar 

  • Ueda Y, Richmond A . (2006). NF-kappaB activation in melanoma. Pigment Cell Res 19: 112–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wajant H, Moosmayer D, Wuest T, Bartke T, Gerlach E, Schonherr U et al. (2001). Differential activation of TRAIL-R1 and -2 by soluble and membrane TRAIL allows selective surface antigen-directed activation of TRAIL-R2 by soluble TRAIL derivative. Oncogene 20: 4101–4106.

    Article  CAS  PubMed  Google Scholar 

  • Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M et al. (1999). Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5: 157–163.

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin Jr AS . (1998). NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281: 1680–1683.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chan S, Tsang BK . (2002). Involvement of inhibitory nuclear factor-kappaB (NFkappaB)-independent NFkappaB activation in the gonadotropic regulation of X-linked inhibitor of apoptosis expression during ovarian follicular development in vitro. Endocrinology 143: 2732–2740.

    Article  CAS  PubMed  Google Scholar 

  • Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK et al. (1995). Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3: 673–682.

    Article  CAS  PubMed  Google Scholar 

  • Xiao C, Yang BF, Song JH, Schulman H, Li L, Hao C . (2005). Inhibition of CaMKII-mediated cFLIP expression sensitizes malignant melanoma cells to TRAIL-induced apoptosis. Exp Cell Res 304: 244–255.

    Article  CAS  PubMed  Google Scholar 

  • Zeise E, Weichenthal M, Schwarz T, Kulms D . (2004). Resistance of human melanoma cells against the death ligand TRAIL is reversed by ultraviolet-B radiation via downregulation of FLIP. J Invest Dermatol 123: 746–754.

    Article  CAS  PubMed  Google Scholar 

  • Zhang XD, Wu JJ, Gillespie S, Borrow J, Hersey P . (2006). Human melanoma cells selected for resistance to apoptosis by prolonged exposure to tumor necrosis factor-related apoptosis-inducing ligand are more vulnerable to necrotic cell death induced by cisplatin. Clin Cancer Res 12: 1355–1364.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Amgen/Genentech (Seattle, USA) for providing TRAIL antibodies. We are grateful to F Meier (Department of Dermato-Oncology, University of Tübingen) for providing melanoma cell lines and melanocytes, H Walczak (Tumour Immunology Unit, Imperial College London) for supplying iz-TRAIL and to H Kashkar (Institute for Medical Microbiology, University of Cologne) for the xIAP-pEGFPC3 construct. This study was funded by Deutsche Krebshilfe 106699.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Kulms.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thayaparasingham, B., Kunz, A., Peters, N. et al. Sensitization of melanoma cells to TRAIL by UVB-induced and NF-κB-mediated downregulation of xIAP. Oncogene 28, 345–362 (2009). https://doi.org/10.1038/onc.2008.397

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.397

Keywords

This article is cited by

Search

Quick links