Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hypoxia-activated autophagy accelerates degradation of SQSTM1/p62

Abstract

Sequestosome 1 (SQSTM1/p62) is a multifunctional protein involved in signal transduction, protein degradation and cell transformation. Hypoxia is a common feature of solid tumours that promotes cancer progression. Here, we report that p62 is downregulated in hypoxia in carcinoma cells and that the expression is rapidly restored in response to reoxygenation. The hypoxic p62 downregulation did not occur at the mRNA level and was independent of the hypoxic signal mediators hypoxia-inducible factor (HIF) and von Hippel-Lindau tumour suppressor protein as well as the activity of HIF-prolyl hydroxylases and was not mediated by proteosomal destruction. Autophagy was activated in hypoxia and was required for p62 degradation. The hypoxic degradation of p62 was blocked by autophagy inhibitors as well as by the attenuation of Atg8/LC3 expression. Downregulation of p62 was required for hypoxic extracellular regulated kinase (ERK)-1/2 phosphorylation. Attenuation of p62 in normoxia activated and forced expression of p62 in hypoxia blocked the activation of ERK-1/2. The results demonstrate that hypoxic activation of autophagy induces clearance of p62 protein and implies a role for p62 in the regulation of hypoxic cancer cell survival responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN et al. (2006). Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol 169: 566–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J et al. (2003). HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J 22: 4082–4090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A et al. (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171: 603–614.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruick RK, McKnight SL . (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294: 1337–1340.

    Article  CAS  PubMed  Google Scholar 

  • Duran A, Linares JF, Galvez AS, Wikenheiser K, Flores JM, Diaz-Meco MT et al. (2008). The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell 13: 343–354.

    Article  CAS  PubMed  Google Scholar 

  • Duran A, Serrano M, Leitges M, Flores JM, Picard S, Brown JP et al. (2004). The atypical PKC-interacting protein p62 is an important mediator of RANK-activated osteoclastogenesis. Dev Cell 6: 303–309.

    Article  CAS  PubMed  Google Scholar 

  • Ekstrom P, Kanje M . (1984). Inhibition of fast axonal transport by erythro-9-[3-(2-hydroxynonyl)]adenine. J Neurochem 43: 1342–1345.

    Article  CAS  PubMed  Google Scholar 

  • Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107: 43–54.

    Article  CAS  PubMed  Google Scholar 

  • Geetha T, Jiang J, Wooten MW . (2005). Lysine 63 polyubiquitination of the nerve growth factor receptor TrkA directs internalization and signaling. Mol Cell 20: 301–312.

    Article  CAS  PubMed  Google Scholar 

  • Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M et al. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292: 464–468.

    Article  CAS  PubMed  Google Scholar 

  • Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ et al. (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292: 468–472.

    Article  CAS  PubMed  Google Scholar 

  • Jokilehto T, Rantanen K, Luukkaa M, Heikkinen P, Grenman R, Minn H et al. (2006). Overexpression and nuclear translocation of hypoxia-inducible factor prolyl hydroxylase PHD2 in head and neck squamous cell carcinoma is associated with tumor aggressiveness. Clin Cancer Res 12: 1080–1087.

    Article  CAS  PubMed  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T et al. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19: 5720–5728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaelin WG . (2005). Proline hydroxylation and gene expression. Annu Rev Biochem 74: 115–128.

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T et al. (2007). Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131: 1149–1163.

    Article  CAS  PubMed  Google Scholar 

  • Kondo Y, Kanzawa T, Sawaya R, Kondo S . (2005). The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5: 726–734.

    Article  CAS  PubMed  Google Scholar 

  • Koumenis C, Wouters BG . (2006). ‘Translating’ tumor hypoxia: unfolded protein response (UPR)-dependent and UPR-independent pathways. Mol Cancer Res 4: 423–436.

    Article  CAS  PubMed  Google Scholar 

  • Kuusisto E, Salminen A, Alafuzoff I . (2001a). Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. NeuroReport 12: 2085–2090.

    Article  CAS  PubMed  Google Scholar 

  • Kuusisto E, Suuronen T, Salminen A . (2001b). Ubiquitin-binding protein p62 expression is induced during apoptosis and proteasomal inhibition in neuronal cells. Biochem Biophys Res Commun 280: 223–228.

    Article  CAS  PubMed  Google Scholar 

  • Kwon DS, Kwon CH, Kim JH, Woo JS, Jung JS, Kim YK . (2006). Signal transduction of MEK/ERK and PI3K/Akt activation by hypoxia/reoxygenation in renal epithelial cells. Eur J Cell Biol 85: 1189–1199.

    Article  CAS  PubMed  Google Scholar 

  • Lamark T, Perander M, Outzen H, Kristiansen K, Overvatn A, Michaelsen E et al. (2003). Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J Biol Chem 278: 34568–34581.

    Article  CAS  PubMed  Google Scholar 

  • Levine B, Kroemer G . (2008). Autophagy in the pathogenesis of disease. Cell 132: 27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim JH, Park JW, Kim MS, Park SK, Johnson RS, Chun YS . (2006). Bafilomycin induces the p21-mediated growth inhibition of cancer cells under hypoxic conditions by expressing hypoxia-inducible factor-1alpha. Mol Pharmacol 70: 1856–1865.

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC . (2006). Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell 21: 521–531.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin P, Diaz-Meco MT, Moscat J . (2006). The signaling adapter p62 is an important mediator of T helper 2 cell function and allergic airway inflammation. EMBO J 25: 3524–3533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masson N, Appelhoff RJ, Tuckerman JR, Tian YM, Demol H, Puype M et al. (2004). The HIF prolyl hydroxylase PHD3 is a potential substrate of the TRiC chaperonin. FEBS Lett 570: 166–170.

    Article  CAS  PubMed  Google Scholar 

  • Minet E, Arnould T, Michel G, Roland I, Mottet D, Raes M et al. (2000). ERK activation upon hypoxia: involvement in HIF-1 activation. FEBS Lett 468: 53–58.

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ . (2008). Autophagy Figurehts disease through cellular self-digestion. Nature 451: 1069–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakaso K, Yoshimoto Y, Nakano T, Takeshima T, Fukuhara Y, Yasui K et al. (2004). Transcriptional activation of p62/A170/ZIP during the formation of the aggregates: possible mechanisms and the role in Lewy body formation in Parkinson's disease. Brain Res 1012: 42–51.

    Article  CAS  PubMed  Google Scholar 

  • Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T et al. (2005). Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307: 593–596.

    Article  CAS  PubMed  Google Scholar 

  • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H et al. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282: 24131–24145.

    Article  CAS  PubMed  Google Scholar 

  • Pugh CW, Ratcliffe PJ . (2003). Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9: 677–684.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez A, Duran A, Selloum M, Champy MF, Diez-Guerra FJ, Flores JM et al. (2006). Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metab 3: 211–222.

    Article  CAS  PubMed  Google Scholar 

  • Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z . (2007). Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26: 1749–1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schofield CJ, Ratcliffe PJ . (2004). Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5: 343–354.

    Article  CAS  PubMed  Google Scholar 

  • Seglen PO, Gordon PB . (1982). 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA 79: 1889–1892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW . (2004). Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 24: 8055–8068.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Semenza GL . (2003). Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3: 721–732.

    Article  CAS  PubMed  Google Scholar 

  • Thompson HG, Harris JW, Wold BJ, Lin F, Brody JP . (2003). p62 overexpression in breast tumors and regulation by prostate-derived Ets factor in breast cancer cells. Oncogene 22: 2322–2333.

    Article  CAS  PubMed  Google Scholar 

  • Thuerauf DJ, Marcinko M, Gude N, Rubio M, Sussman MA, Glembotski CC . (2006). Activation of the unfolded protein response in infarcted mouse heart and hypoxic cultured cardiac myocytes. Circ Res 99: 275–282.

    Article  CAS  PubMed  Google Scholar 

  • Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF . (2007). BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 27: 6229–6242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wooten MW, Hu X, Babu JR, Seibenhener ML, Geetha T, Paine MG et al. (2006). Signaling, polyubiquitination, trafficking, and inclusions: sequestosome 1/p62's role in neurodegenerative disease. J Biomed Biotechnol 2006: 62079.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamoto A, Tagawa Y, Yoshimori T, Moriyama Y, Masaki R, Tashiro Y . (1998). Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct 23: 33–42.

    Article  CAS  PubMed  Google Scholar 

  • Zatloukal K, Stumptner C, Fuchsbichler A, Heid H, Schnoelzer M, Kenner L et al. (2002). p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol 160: 255–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB et al. (2008). Mitochondrial autophagy is a HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283: 10892–10903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Taina Kalevo-Mattila is acknowledged for expert technical assistance. The study was supported by The Academy of Finland (grants 200779, 210282 and 8109024), Emil Aaltonen Foundation and Sigrid Juselius Foundation to PMJ, and by grants from the Norwegian Research Council (FUGE) and Norwegian Cancer Society to TJ. PMJ is a research fellow of the Finnish Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P M Jaakkola.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pursiheimo, JP., Rantanen, K., Heikkinen, P. et al. Hypoxia-activated autophagy accelerates degradation of SQSTM1/p62. Oncogene 28, 334–344 (2009). https://doi.org/10.1038/onc.2008.392

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.392

Keywords

This article is cited by

Search

Quick links