Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic disruption of the Nrf2 compromises cell-cycle progression by impairing GSH-induced redox signaling

Abstract

Genetic disruption of Nrf2 greatly enhances susceptibility to prooxidant- and carcinogen-induced experimental models of various human disorders; but the mechanisms by which this transcription factor confers protection are unclear. Using Nrf2-proficient (Nrf2+/+) and Nrf2-deficient (Nrf2−/−) primary epithelial cultures as a model, we now show that Nrf2 deficiency leads to oxidative stress and DNA lesions, accompanied by impairment of cell-cycle progression, mainly G2/M-phase arrest. Both N-acetylcysteine and glutathione (GSH) supplementation ablated the DNA lesions and DNA damage–response pathways in Nrf2−/− cells; however only GSH could rescue the impaired colocalization of mitosis-promoting factors and the growth arrest. Akt activation was deregulated in Nrf2−/− cells, but GSH supplementation restored it. Inhibition of Akt signaling greatly diminished the GSH-induced Nrf2−/− cell proliferation and wild-type cell proliferation. GSH depletion impaired Akt signaling and mitosis-promoting factor colocalization in Nrf2+/+ cells. Collectively, our findings uncover novel functions for Nrf2 in regulating oxidative stress-induced cell-cycle arrest, especially G2/M-checkpoint arrest, and proliferation, and GSH-regulated redox signaling and Akt are required for this process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Aoki Y, Sato H, Nishimura N, Takahashi S, Itoh K, Yamamoto M . (2001). Accelerated DNA adduct formation in the lung of the Nrf2 knockout mouse exposed to diesel exhaust. Toxicol Appl Pharmacol 173: 154–160.

    Article  CAS  Google Scholar 

  • Bakkenist CJ, Kastan MB . (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499–506.

    Article  CAS  Google Scholar 

  • Bracken AP, Ciro M, Cocito A, Helin K . (2004). E2F target genes: unraveling the biology. Trends Biochem Sci 29: 409–417.

    Article  CAS  Google Scholar 

  • Buchold GM, Magyar PL, Arumugam R, Lee MM, O′Brien DA . (2007). p19Ink4d and p18Ink4c cyclin-dependent kinase inhibitors in the male reproductive axis. Mol Reprod Dev 74: 997–1007.

    Article  CAS  Google Scholar 

  • Chan K, Kan YW . (1999). Nrf2 is essential for protection against acute pulmonary injury in mice. Proc Natl Acad Sci USA 96: 12731–12736.

    Article  CAS  Google Scholar 

  • Chen XL, Varner SE, Rao AS, Grey JY, Thomas S, Cook CK et al. (2003). Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. J Biol Chem 278: 703–711.

    Article  CAS  Google Scholar 

  • Cho H-Y, Jedlicka AE, Reddy SPM, Kensler TW, Yamamoto M, Zhang L-Y et al. (2002). Role of NRF2 in protection against hyperoxic lung injury in mice. Am J Respir Cell Mol Biol 26: 175–182.

    Article  CAS  Google Scholar 

  • Cho HY, Reddy SP, Kleeberger SR . (2006). Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal 8: 76–87.

    Article  CAS  Google Scholar 

  • Clavreul N, Bachschmid MM, Hou X, Shi C, Idrizovic A, Ido Y et al. (2006). S-glutathiolation of p21ras by peroxynitrite mediates endothelial insulin resistance caused by oxidized low-density lipoprotein. Arterioscler Thromb Vasc Biol 26: 2454–2461.

    Article  CAS  Google Scholar 

  • Conour JE, Graham WV, Gaskins HR . (2004). A combined in vitro/bioinformatic investigation of redox regulatory mechanisms governing cell cycle progression. Physiol Genomics 18: 196–205.

    Article  CAS  Google Scholar 

  • Cross JV, Templeton DJ . (2004). Oxidative stress inhibits MEKK1 by site-specific glutathionylation in the ATP-binding domain. Biochem J 381: 675–683.

    Article  CAS  Google Scholar 

  • Dalle-Donne I, Carini M, Vistoli G, Gamberoni L, Giustarini D, Colombo R et al. (2007a). Actin Cys374 as a nucleophilic target of alpha, beta-unsaturated aldehydes. Free Radic Biol Med 42: 583–598.

    Article  CAS  Google Scholar 

  • Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A . (2007b). S-glutathionylation in protein redox regulation. Free Radic Biol Med 43: 883–898.

    Article  CAS  Google Scholar 

  • Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A, Nebreda AR . (2007). p38alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell 11: 191–205.

    Article  CAS  Google Scholar 

  • Fratelli M, Gianazza E, Ghezzi P . (2004). Redox proteomics: identification and functional role of glutathionylated proteins. Expert Rev Proteomics 1: 365–376.

    Article  CAS  Google Scholar 

  • Fratelli M, Goodwin LO, Orom UA, Lombardi S, Tonelli R, Mengozzi M et al. (2005). Gene expression profiling reveals a signaling role of glutathione in redox regulation. Proc Natl Acad Sci USA 102: 13998–14003.

    Article  CAS  Google Scholar 

  • Gallogly MM, Mieyal JJ . (2007). Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr Opin Pharmacol 7: 381–391.

    Article  CAS  Google Scholar 

  • Gartel AL, Shchors K . (2003). Mechanisms of c-myc-mediated transcriptional repression of growth arrest genes. Exp Cell Res 283: 17–21.

    Article  CAS  Google Scholar 

  • Ghezzi P, Bonetto V, Fratelli M . (2005). Thiol-disulfide balance: from the concept of oxidative stress to that of redox regulation. Antioxid Redox Signal 7: 964–972.

    Article  CAS  Google Scholar 

  • Golubnitschaja O . (2007). Cell cycle checkpoints: the role and evaluation for early diagnosis of senescence, cardiovascular, cancer, and neurodegenerative diseases. Amino Acids 32: 359–371.

    Article  CAS  Google Scholar 

  • Helt CE, Cliby WA, Keng PC, Bambara RA, O′Reilly MA . (2005). Ataxia telangiectasia mutated (ATM) and ATM and Rad3-related protein exhibit selective target specificities in response to different forms of DNA damage. J Biol Chem 280: 1186–1192.

    Article  CAS  Google Scholar 

  • Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y et al. (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236: 313–322.

    Article  CAS  Google Scholar 

  • Kastan MB, Lim DS . (2000). The many substrates and functions of ATM. Nat Rev Mol Cell Biol 1: 179–186.

    Article  CAS  Google Scholar 

  • Katayama K, Fujita N, Tsuruo T . (2005). Akt/protein kinase B-dependent phosphorylation and inactivation of WEE1Hu promote cell cycle progression at G2/M transition. Mol Cell Biol 25: 5725–5737.

    Article  CAS  Google Scholar 

  • Kensler TW, Wakabayashi N, Biswal S . (2006). Cell survival responses to environmental stresses Via the Keap1–Nrf2–ARE pathway. Annu Rev Pharmacol Toxicol 47: 89–116.

    Article  Google Scholar 

  • Kim SS, Cao L, Lim SC, Li C, Wang RH, Xu X et al. (2006). Hyperplasia and spontaneous tumor development in the gynecologic system in mice lacking the BRCA1-Delta11 isoform. Mol Cell Biol 26: 6983–6992.

    Article  CAS  Google Scholar 

  • King FW, Skeen J, Hay N, Shtivelman E . (2004). Inhibition of Chk1 by activated PKB/Akt. Cell Cycle 3: 634–637.

    CAS  PubMed  Google Scholar 

  • Kissel H, Georgescu MM, Larisch S, Manova K, Hunnicutt GR, Steller H . (2005). The Sept4 septin locus is required for sperm terminal differentiation in mice. Dev Cell 8: 353–364.

    Article  CAS  Google Scholar 

  • Klatt P, Lamas S . (2002). c-Jun regulation by S-glutathionylation. Methods Enzymol 348: 157–174.

    Article  CAS  Google Scholar 

  • Laine H, Doetzlhofer A, Mantela J, Ylikoski J, Laiho M, Roussel MF et al. (2007). p19(Ink4d) and p21(Cip1) collaborate to maintain the postmitotic state of auditory hair cells, their codeletion leading to DNA damage and p53-mediated apoptosis. J Neurosci 27: 1434–1444.

    Article  CAS  Google Scholar 

  • Li N, Alam J, Venkatesan MI, Eiguren-Fernandez A, Schmitz D, Di Stefano E et al. (2004). Nrf2 is a key transcription factor that regulates antioxidant defense in macrophages and epithelial cells: protecting against the proinflammatory and oxidizing effects of diesel exhaust chemicals. J Immunol 173: 3467–3481.

    Article  CAS  Google Scholar 

  • Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K et al. (2002). PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 8: 1153–1160.

    Article  CAS  Google Scholar 

  • Lopez-Girona A, Furnari B, Mondesert O, Russell P . (1999). Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature 397: 172–175.

    Article  CAS  Google Scholar 

  • Louria-Hayon I, Grossman T, Sionov RV, Alsheich O, Pandolfi PP, Haupt Y . (2003). The promyelocytic leukemia protein protects p53 from Mdm2-mediated inhibition and degradation. J Biol Chem 278: 33134–33141.

    Article  CAS  Google Scholar 

  • Marshall RP, Webb S, Hill MR, Humphries SE, Laurent GJ . (2002). Genetic polymorphisms associated with susceptibility and outcome in ARDS. Chest 121: 68S–69S.

    Article  Google Scholar 

  • McAllister KA, Wiseman RW . (2002). Are Trp53 rescue of Brca1 embryonic lethality and Trp53/Brca1 breast cancer association related? Breast Cancer Res 4: 54–57.

    Article  Google Scholar 

  • Meloche S, Pouyssegur J . (2007). The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 26: 3227–3239.

    Article  CAS  Google Scholar 

  • Meulmeester E, Pereg Y, Shiloh Y, Jochemsen AG . (2005). ATM-mediated phosphorylations inhibit Mdmx/Mdm2 stabilization by HAUSP in favor of p53 activation. Cell Cycle 4: 1166–1170.

    Article  CAS  Google Scholar 

  • Nguyen T, Sherratt PJ, Pickett CB . (2003). Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43: 233–260.

    Article  CAS  Google Scholar 

  • Nigg EA . (2001). Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2: 21–32.

    Article  CAS  Google Scholar 

  • Niida H, Nakanishi M . (2006). DNA damage checkpoints in mammals. Mutagenesis 21: 3–9.

    Article  CAS  Google Scholar 

  • Nurse P . (1990). Universal control mechanism regulating onset of M-phase. Nature 344: 503–508.

    Article  CAS  Google Scholar 

  • Ohta T, Iijima K, Miyamoto M, Nakahara I, Tanaka H, Ohtsuji M et al. (2008). Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 68: 1303–1309.

    Article  CAS  Google Scholar 

  • Okumura E, Fukuhara T, Yoshida H, Hanada Si S, Kozutsumi R, Mori M et al. (2002). Akt inhibits Myt1 in the signalling pathway that leads to meiotic G2/M-phase transition. Nat Cell Biol 4: 111–116.

    Article  CAS  Google Scholar 

  • Padmanabhan B, Tong KI, Ohta T, Nakamura Y, Scharlock M, Ohtsuji M et al. (2006). Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol Cell 21: 689–700.

    Article  CAS  Google Scholar 

  • Parra MT, Page J, Yen TJ, He D, Valdeolmillos A, Rufas JS et al. (2002). Expression and behaviour of CENP-E at kinetochores during mouse spermatogenesis. Chromosoma 111: 53–61.

    Article  CAS  Google Scholar 

  • Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H . (1997). Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277: 1501–1505.

    Article  CAS  Google Scholar 

  • Putkey FR, Cramer T, Morphew MK, Silk AD, Johnson RS, McIntosh JR et al. (2002). Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Dev Cell 3: 351–365.

    Article  CAS  Google Scholar 

  • Qian X, Agematsu K, Freeman GJ, Tagawa Y, Sugane K, Hayashi T . (2006). The ICOS-ligand B7-H2, expressed on human type II alveolar epithelial cells, plays a role in the pulmonary host defense system. Eur J Immunol 36: 906–918.

    Article  CAS  Google Scholar 

  • Rangasamy T, Cho CY, Thimmulappa RK, Zhen L, Srisuma SS, Kensler TW et al. (2004). Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest 114: 1248–1259.

    Article  CAS  Google Scholar 

  • Reddy NM, Kleeberger SR, Cho HY, Yamamoto M, Kensler TW, Biswal S et al. (2007a). Deficiency in Nrf2-GSH Signaling Impairs Type II Cell Growth and Enhances Sensitivity to Oxidants. Am J Respir Cell Mol Biol 37: 3–8.

    Article  CAS  Google Scholar 

  • Reddy NM, Kleeberger SR, Yamamoto M, Kensler TW, Scollick C, Biswal S et al. (2007b). Genetic dissection of the Nrf2-dependent redox signaling regulated transcriptional programs of cell proliferation and cytoprotection. Physiol Genomics 32: 74–81.

    Article  CAS  Google Scholar 

  • Reynaert NL, van der Vliet A, Guala AS, McGovern T, Hristova M, Pantano C et al. (2006). Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta. Proc Natl Acad Sci USA 103: 13086–13091.

    Article  CAS  Google Scholar 

  • Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR . (2000). Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14: 2501–2514.

    Article  CAS  Google Scholar 

  • Serrano-Mollar A, Nacher M, Gay-Jordi G, Closa D, Xaubet A, Bulbena O . (2007). Intratracheal transplantation of alveolar type II cells reverse bleomycin-induced lung fibrosis. Am J Respir Crit Care Med 176: 1261–1268.

    Article  CAS  Google Scholar 

  • Shelton MD, Chock PB, Mieyal JJ . (2005). Glutaredoxin: role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation. Antioxid Redox Signal 7: 348–366.

    Article  CAS  Google Scholar 

  • Shtivelman E . (2003). Promotion of mitosis by activated protein kinase B after DNA damage involves polo-like kinase 1 and checkpoint protein CHFR. Mol Cancer Res 1: 959–969.

    CAS  PubMed  Google Scholar 

  • Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO et al. (2006). Dysfunctional KEAP1–NRF2 interaction in non-small-cell lung cancer. PLoS Med 3: e420.

    Article  Google Scholar 

  • Su TT . (2006). Cellular responses to DNA damage: one signal, multiple choices. Annu Rev Genet 40: 187–208.

    Article  CAS  Google Scholar 

  • Sugahara K, Tokumine J, Teruya K, Oshiro T . (2006). Alveolar epithelial cells: differentiation and lung injury. Respirology 11 (Suppl): S28–S31.

    Article  Google Scholar 

  • Taylor WR, Stark GR . (2001). Regulation of the G2/M transition by p53. Oncogene 20: 1803–1815.

    Article  CAS  Google Scholar 

  • Thimmulappa RK, Scollick C, Traore K, Yates M, Trush MA, Liby KT et al. (2006). Nrf2-dependent protection from LPS induced inflammatory response and mortality by CDDO-imidazolide. Biochem Biophys Res Commun 351: 883–889.

    Article  CAS  Google Scholar 

  • Timmers C, Sharma N, Opavsky R, Maiti B, Wu L, Wu J et al. (2007). E2f1, E2f2, and E2f3 control E2F target expression and cellular proliferation via a p53-dependent negative feedback loop. Mol Cell Biol 27: 65–78.

    Article  CAS  Google Scholar 

  • Townsend DM, Findlay VJ, Fazilev F, Ogle M, Fraser J, Saavedra JE et al. (2006). A glutathione S-transferase pi-activated prodrug causes kinase activation concurrent with S-glutathionylation of proteins. Mol Pharmacol 69: 501–508.

    Article  CAS  Google Scholar 

  • Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H et al. (2006). Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10: 241–252.

    Article  CAS  Google Scholar 

  • Trotman LC, Alimonti A, Scaglioni PP, Koutcher JA, Cordon-Cardo C, Pandolfi PP . (2006). Identification of a tumour suppressor network opposing nuclear Akt function. Nature 441: 523–527.

    Article  CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J . (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 44–84.

    Article  CAS  Google Scholar 

  • Velu CS, Niture SK, Doneanu CE, Pattabiraman N, Srivenugopal KS . (2007). Human p53 is inhibited by glutathionylation of cysteines present in the proximal DNA-binding domain during oxidative stress. Biochemistry 46: 7765–7780.

    Article  CAS  Google Scholar 

  • Wakabayashi N, Itoh K, Wakabayashi J, Motohashi H, Noda S, Takahashi S et al. (2003). Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat Genet 35: 238–245.

    Article  CAS  Google Scholar 

  • Ward NE, Stewart JR, Ioannides CG, O′Brian CA . (2000). Oxidant-induced S-glutathiolation inactivates protein kinase C-alpha (PKC-alpha): a potential mechanism of PKC isozyme regulation. Biochemistry 39: 10319–10329.

    Article  CAS  Google Scholar 

  • Yoshida Y, Nakamura T, Komoda M, Satoh H, Suzuki T, Tsuzuku JK et al. (2003). Mice lacking a transcriptional corepressor Tob are predisposed to cancer. Genes Dev 17: 1201–1206.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants HL66109, ES11863 and SCCOR P50 HL073994 (to SPR), and NIEHS center grant P30 ES 038819. We acknowledge the help provided for FACS analysis by Becton Dickinson Immune Function Laboratory, Johns Hopkins Bloomberg School of Public Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S P Reddy.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, N., Kleeberger, S., Bream, J. et al. Genetic disruption of the Nrf2 compromises cell-cycle progression by impairing GSH-induced redox signaling. Oncogene 27, 5821–5832 (2008). https://doi.org/10.1038/onc.2008.188

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.188

Keywords

This article is cited by

Search

Quick links