Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pim kinase-dependent inhibition of c-Myc degradation

Abstract

Pim kinases are found to be highly expressed in leukemia, lymphoma, prostate and pancreatic cancer. Bitransgenic mice overexpressing either Pim-1 or Pim-2 and c-Myc succumb to pre-B-cell lymphoma at a strikingly accelerated speed. Despite that Pim-1/Pim-2 has long been recognized as a strong synergistic partner with c-Myc in tumorigenesis, the mechanism underlying the synergism is still not well understood. Overexpression of Pim-1/Pim-2 kinase dramatically stabilizes c-Myc in vivo, and the stabilization is partially mediated by phosphorylation of c-Myc by Pim kinase on a novel site, Ser329. We provide evidence that Pim-2 is more efficient in directly phosphorylating c-Myc Ser329 to stabilize c-Myc. In contrast, we find that Pim-1 is more effective in mediating a decrease in c-Myc Thr58 phosphorylation and an increase in c-Myc Ser62 phosphorylation than in phosphorylating Ser329. In either case, through stabilizing c-Myc, Pim-1/Pim-2 kinases enhance the transcriptional activity of c-Myc. Also knocking down either Pim-1 or Pim-2 dramatically decreases the endogenous levels of c-Myc and thus, its transcriptional activity. Finally, coexpression of the Pim kinases and c-Myc enhances the transforming activity of c-Myc as does the phosphomimic mutant of c-Myc on Ser329. We conclude that these findings appear to explain at least in part the mechanism underlying the synergism between the Pim kinases and c-Myc in tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Allen JD, Verhoeven E, Domen J, van d V, Berns A . (1997). Pim-2 transgene induces lymphoid tumors, exhibiting potent synergy with c-myc. Oncogene 15: 1133–1141.

    Article  CAS  Google Scholar 

  • Amati B, Alevizopoulos K, Vlach J . (1998). Myc and the cell cycle. Front Biosci 3: d250–d268.

    Article  CAS  Google Scholar 

  • Amson R, Sigaux F, Przedborski S, Flandrin G, Givol D, Telerman A . (1989). The human protooncogene product p33pim is expressed during fetal hematopoiesis and in diverse leukemias. Proc Natl Acad Sci USA 86: 8857–8861.

    Article  CAS  Google Scholar 

  • Breuer M, Wientjens E, Verbeek S, Slebos R, Berns A . (1991). Carcinogen-induced lymphomagenesis in pim-1 transgenic mice: dose dependence and involvement of myc and ras. Cancer Res 51: 958–963.

    CAS  PubMed  Google Scholar 

  • Bubman D, Guasparri I, Cesarman E . (2007). Deregulation of c-Myc in primary effusion lymphoma by Kaposi's sarcoma herpesvirus latency-associated nuclear antigen. Oncogene 26: 4979–4986.

    Article  CAS  Google Scholar 

  • Chen WW, Chan DC, Donald C, Lilly MB, Kraft AS . (2005). Pim family kinases enhance tumor growth of prostate cancer cells. Mol Cancer Res 3: 443–451.

    Article  CAS  Google Scholar 

  • Cowling VH, Cole MD . (2006). Mechanism of transcriptional activation by the Myc oncoproteins. Semin Cancer Biol 16: 242–252.

    Article  CAS  Google Scholar 

  • Cuypers HT, Selten G, Quint W, Zijlstra M, Maandag ER, Boelens W . (1984). Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell 37: 141–150.

    Article  CAS  Google Scholar 

  • Dang CV, O'donnell KA, Juopperi T . (2005). The great MYC escape in tumorigenesis. Cancer Cell 8: 177–178.

    Article  CAS  Google Scholar 

  • De Both NJ, van der Feltz MJ, Mooren A, Vermaas D, Klaassen P, Rhijnsburger EH et al. (1989). Oncogene expression in Rauscher murine leukemia virus induced erythroid, myeloid and lymphoid cell lines. Leuk Res 13: 53–64.

    Article  CAS  Google Scholar 

  • Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K et al. (2001). Delineation of prognostic biomarkers in prostate cancer. Nature 412: 822–826.

    Article  CAS  Google Scholar 

  • Ellwood-Yen K, Graeber TG, Wongvipat J, Iruela-Arispe ML, Zhang J, Matusik R et al. (2003). Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4: 223–238.

    Article  CAS  Google Scholar 

  • Friedmann M, Nissen MS, Hoover DS, Reeves R, Magnuson NS . (1992). Characterization of the protooncogene Pim-1-kinase-activity and substrate recognition sequence. Arch Biochem Biophys 298: 594–601.

    Article  CAS  Google Scholar 

  • Hoover D, Friedmann M, Reeves R, Magnuson NS . (1991). Recombinant human Pim-1 protein exhibits serine threonine kinase-activity. J Biol Chem 266: 14018–14023.

    CAS  PubMed  Google Scholar 

  • Hurlin PJ, Huang J . (2006). The MAX-interacting transcription factor network. Semin Cancer Biol 16: 265–274.

    Article  CAS  Google Scholar 

  • Li YY, Popivanova BK, Nagai Y, Ishikura H, Fujii C, Mukaida N . (2006). Pim-3, a proto-oncogene with serine/threonine kinase activity, is aberrantly expressed in human pancreatic cancer and phosphorylates bad to block bad-mediated apoptosis in human pancreatic cancer cell lines. Cancer Res 66: 6741–6747.

    Article  CAS  Google Scholar 

  • Liu J, Martin HJ, Liao G, Hayward SD . (2007). The Kaposi's sarcoma-associated herpesvirus LANA protein stabilizes and activates c-Myc. J Virol 81: 10451–10459.

    Article  CAS  Google Scholar 

  • Macdonald A, Campbell DG, Toth R, McLauchlan H, Hastie CJ, Arthur JSC . (2006). Pim kinases phosphorylate multiple sites on Bad and promote 14-3-3 binding and dissociation from Bcl-X-L. BMC Cell Biol 7: 1.

    Article  Google Scholar 

  • Malempati S, Tibbitts D, Cunningham M, Akkari Y, Olson S, Fan G et al. (2006). Aberrant stabilization of c-Myc protein in some lymphoblastic leukemias. Leukemia 2: 1572–1581.

    Article  Google Scholar 

  • Mikkers H, Nawijn M, Allen J, Brouwers C, Verhoeven E, Jonkers J et al. (2004). Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors. Mol Cell Biol 24: 6104–6115.

    Article  CAS  Google Scholar 

  • Moroy T, Verbeek S, Ma A, Achacoso P, Berns A, Alt F . (1991). E mu N- and E mu L-myc cooperate with E mu pim-1 to generate lymphoid tumors at high frequency in double-transgenic mice. Oncogene 6: 1941–1948.

    CAS  PubMed  Google Scholar 

  • Pelengaris S, Khan M, Evan G . (2002). c-MYC: more than just a matter of life and death. Nat Rev Cancer 2: 764–776.

    Article  CAS  Google Scholar 

  • Peng C, Knebel A, Morrice NA, Li X, Barringer K, Li J et al. (2007). Pim kinase substrate identification and specificity. J Biochem (Tokyo) 141: 353–362.

    Article  CAS  Google Scholar 

  • Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR . (2000). Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14: 2501–2514.

    Article  CAS  Google Scholar 

  • Selten G, Cuypers HT, Berns A . (1985). Proviral activation of the putative oncogene Pim-1 in MuLV induced T-cell lymphomas. EMBO J 4: 1793–1798.

    Article  CAS  Google Scholar 

  • van der Lugt NM, Domen J, Verhoeven E, Linders K, van der GH, Allen J et al. (1995). Proviral tagging in E mu-myc transgenic mice lacking the Pim-1 proto-oncogene leads to compensatory activation of Pim-2. EMBO J 14: 2536–2544.

    Article  CAS  Google Scholar 

  • van Lohuizen M, Verbeek S, Krimpenfort P, Domen J, Saris C, Radaszkiewicz T et al. (1989). Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell 56: 673–682.

    Article  CAS  Google Scholar 

  • van Lohuizen M, Verbeek S, Scheijen B, Wientjens E, van der GH, Berns A . (1991). Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 65: 737–752.

    Article  CAS  Google Scholar 

  • Vita M, Henriksson M . (2006). The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol 16: 318–330.

    Article  CAS  Google Scholar 

  • Wanzel M, Herold S, Eilers M . (2003). Transcriptional repression by Myc. Trends Cell Biol 13: 146–150.

    Article  CAS  Google Scholar 

  • Yeh E, Cunningham M, Arnold H, Chasse D, Monteith T, Ivaldi G et al. (2004). A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 6: 308–318.

    Article  CAS  Google Scholar 

  • Zhang Y, Wang Z, Magnuson NS . (2007). Pim-1 kinase-dependent phosphorylation of p21Cip1/WAF1 regulates its stability and cellular localization in H1299 cells. Mol Cancer Res 5: 909–922.

    Article  CAS  Google Scholar 

  • Zippo A, De Robertis A, Serafini R, Oliviero S . (2007). PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Bio 9: 932–944.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grant NIH R01-CA104470. We thank Dr Mark I Greene (School of Medicine, University of Pennsylvania) for providing us the luciferase reporter plasmid, pM4 min-luciferase.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N S Magnuson.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Wang, Z., Li, X. et al. Pim kinase-dependent inhibition of c-Myc degradation. Oncogene 27, 4809–4819 (2008). https://doi.org/10.1038/onc.2008.123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.123

Keywords

This article is cited by

Search

Quick links