Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A newly discovered function for RNase L in regulating translation termination

Abstract

The antiviral and antiproliferative effects of interferons are mediated in part by the 2′-5′ oligoadenylate–RNase L RNA decay pathway. RNase L is an endoribonuclease that requires 2′-5′ oligoadenylates to cleave single-stranded RNA. In this report we present evidence demonstrating a role for RNase L in translation. We identify and characterize the human translation termination factor eRF3/GSPT1 as an interacting partner of RNase L. We show that interaction of eRF3 with RNase L leads to both increased translation readthrough efficiency at premature termination codons and increased +1 frameshift efficiency at the antizyme +1 frameshift site. On the basis of our results, we present a model describing how RNase L is involved in regulating gene expression by modulating the translation termination process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purification and identification of an RNase L-binding protein as eRF3/GSPT1.
Figure 2: Direct interaction between eRF3/GSPT1 and RNase L recombinant proteins.
Figure 3: Activation of RNase L by 2-5A3 increases the readthrough in rabbit reticulocyte lysate (RRL).
Figure 4: Human recombinant RNase L increases the readthrough in RRL.
Figure 5: Ribosomal readthrough is increased only in the presence of 2-5A trimer (2-5A3).
Figure 6: RNase L mediates antizyme +1 frameshifting induced by IFNα.
Figure 7: Model for the mechanism of action of RNase L in translation termination.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Isaacs, A. & Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B 147, 258–267 (1957).

    Article  CAS  Google Scholar 

  2. Zhou, A., Hassel, B.A. & Silverman, R.H. Expression cloning of 2–5A-dependent RNAase: a uniquely regulated mediator of interferon action. Cell 72, 753–765 (1993).

    Article  CAS  Google Scholar 

  3. Hassel, B.A., Zhou, A., Sotomayor, C., Maran, A. & Silverman, R.H. A dominant negative mutant of 2–5A-dependent RNase suppresses antiproliferative and antiviral effects of interferon. EMBO J. 12, 3297–3304 (1993).

    Article  CAS  Google Scholar 

  4. Castelli, J.C. et al. The role of 2'-5′ oligoadenylate-activated ribonuclease L in apoptosis. Cell Death Differ. 5, 313–320 (1998).

    Article  CAS  Google Scholar 

  5. Zhou, A. et al. Interferon action and apoptosis are defective in mice devoid of 2′,5′-oligoadenylate-dependent RNase L. EMBO J. 16, 6355–6363 (1997).

    Article  CAS  Google Scholar 

  6. Le Roy, F. et al. The 2–5A/RNase L/RNase L inhibitor (RLI) pathway regulates mitochondrial mRNAs stability in interferon α-treated H9 cells. J. Biol. Chem. 276, 48473–48482 (2001).

    Article  CAS  Google Scholar 

  7. Dong, B. & Silverman, R.H. 2–5A-dependent RNase molecules dimerize during activation by 2–5A. J. Biol. Chem. 270, 4133–4137 (1995).

    Article  CAS  Google Scholar 

  8. Li, X.L., Blackford, J.A. & Hassel, B.A. RNase L mediates the antiviral effect of interferon through a selective reduction in viral RNA during encephalomyocarditis virus infection. J. Virol. 72, 2752–2759 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Maitra, R.K. & Silverman, R.H. Regulation of human immunodeficiency virus replication by 2′,5′-oligoadenylate-dependent RNase L. J. Virol. 72, 1146–1152 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Martinand, C. et al. RNase L inhibitor is induced during human immunodeficiency virus type 1 infection and down regulates the 2–5A/RNase L pathway in human T cells. J. Virol. 73, 290–296 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Behera, A.K., Kumar, M., Lockey, R.F. & Mohapatra, S.S. 2′-5′ Oligoadenylate synthetase plays a critical role in interferon-γ inhibition of respiratory syncytial virus infection of human epithelial cells. J. Biol. Chem. 277, 25601–25608 (2002).

    Article  CAS  Google Scholar 

  12. Li, X.L. et al. RNase-L-dependent destabilization of interferon-induced mRNAs. A role for the 2–5A system in attenuation of the interferon response. J. Biol. Chem. 275, 8880–8888 (2000).

    Article  CAS  Google Scholar 

  13. Bisbal, C. et al. The 2'-5′ oligoadenylate/RNase L/RNase L inhibitor pathway regulates both MyoD mRNA stability and muscle cell differentiation. Mol. Cell. Biol. 20, 4959–4969 (2000).

    Article  CAS  Google Scholar 

  14. Khabar, K.S. et al. RNase L mediates transient control of the interferon response through modulation of the double-stranded RNA-dependent protein kinase PKR. J. Biol. Chem. 278, 20124–20132 (2003).

    Article  CAS  Google Scholar 

  15. Dong, B., Niwa, M., Walter, P. & Silverman, R.H. Basis for regulated RNA cleavage by functional analysis of RNase L and Ire1p. RNA 7, 361–373 (2001).

    Article  CAS  Google Scholar 

  16. Bisbal, C., Martinand, C., Silhol, M., Lebleu, B. & Salehzada, T. Cloning and characterization of a RNAse L inhibitor. A new component of the interferon-regulated 2–5A pathway. J. Biol. Chem. 270, 13308–13317 (1995).

    Article  CAS  Google Scholar 

  17. Shetzline, S.E. et al. Structural and functional features of the 37-kDa 2–5A-dependent RNase L in chronic fatigue syndrome. J. Interferon Cytokine Res. 22, 443–456 (2002).

    Article  CAS  Google Scholar 

  18. Salehzada, T., Silhol, M., Steff, A.M., Lebleu, B. & Bisbal, C. 2′,5′-Oligoadenylate-dependent RNase L is a dimer of regulatory and catalytic subunits. J. Biol. Chem. 268, 7733–7740 (1993).

    CAS  PubMed  Google Scholar 

  19. Le Roy, F., Laskowska, A., Silhol, M., Salehzada, T. & Bisbal, C. Characterization of RNABP, an RNA binding protein that associates with RNase L. J. Interferon Cytokine Res. 20, 635–644 (2000).

    Article  CAS  Google Scholar 

  20. Hoshino, S. et al. A human homologue of the yeast GST1 gene codes for a GTP-binding protein and is expressed in a proliferation-dependent manner in mammalian cells. EMBO J. 8, 3807–3814 (1989).

    Article  CAS  Google Scholar 

  21. Frolova, L. et al. A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature 372, 701–703 (1994).

    Article  CAS  Google Scholar 

  22. Zhouravleva, G. et al. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J. 14, 4065–4072 (1995).

    Article  CAS  Google Scholar 

  23. Frolova, L. et al. Eukaryotic polypeptide chain release factor eRF3 is an eRF1- and ribosome-dependent guanosine triphosphatase. RNA 2, 334–341 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hoshino, S. et al. Molecular cloning of a novel member of the eukaryotic polypeptide chain-releasing factors (eRF). Its identification as eRF3 interacting with eRF1. J. Biol. Chem. 273, 22254–22259 (1998).

    Article  CAS  Google Scholar 

  25. Jakobsen, C.G., Segaard, T.M., Jean-Jean, O., Frolova, L. & Justesen, J. Identification of a novel termination release factor eRF3b expressing the eRF3 activity in vitro and in vivo. Mol. Biol. (Mosk.) 35, 672–681 (2001).

    Article  CAS  Google Scholar 

  26. Le Goff, C. et al. Mouse GSPT2, but not GSPT1, can substitute for yeast eRF3 in vivo. Genes Cells 7, 1043–1057 (2002).

    Article  CAS  Google Scholar 

  27. Kikuchi, Y., Shimatake, H. & Kikuchi, A. A yeast gene required for the G1-to-S transition encodes a protein containing an A-kinase target site and GTPase domain. EMBO J. 7, 1175–1182 (1988).

    Article  CAS  Google Scholar 

  28. Hoshino, S., Imai, M., Kobayashi, T., Uchida, N. & Katada, T. The eukaryotic polypeptide chain releasing factor (eRF3/GSPT) carrying the translation termination signal to the 3′-Poly(A) tail of mRNA. Direct association of erf3/GSPT with polyadenylate-binding protein. J. Biol. Chem. 274, 16677–16680 (1999).

    Article  CAS  Google Scholar 

  29. Uchida, N., Hoshino, S.I., Imataka, H., Sonenberg, N. & Katada, T. A novel role of the mammalian GSPT/eRF3 associating with poly(A)-binding protein in Cap/Poly(A)-dependent translation. J. Biol. Chem. 277, 50286–50292 (2002).

    Article  CAS  Google Scholar 

  30. Wu, J.M., Konno, S. & Eslami, B. Effects of K+ concentration on inhibition of protein synthesis by trimer and tetramer triphosphates of 2′,5′-oligoadenylates in rabbit reticulocyte lysates. Biochem. Biophys. Res. Commun. 130, 821–827 (1985).

    Article  CAS  Google Scholar 

  31. Dong, B. et al. Intrinsic molecular activities of the interferon-induced 2–5A-dependent RNase. J. Biol. Chem. 269, 14153–14158 (1994).

    CAS  PubMed  Google Scholar 

  32. Kerr, I.M. & Brown, R.E. pppA2'p5'A2'p5'A: an inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells. Proc. Natl. Acad. Sci. USA 75, 256–260 (1978).

    Article  CAS  Google Scholar 

  33. Martin, E.M., Birdsall, N.J., Brown, R.E. & Kerr, I.M. Enzymic synthesis, characterisation and nuclear-magnetic-resonance spectra of pppA2'p5'A2'p5'A and related oligonucleotides: comparison with chemically synthesised material. Eur. J. Biochem. 95, 295–307 (1979).

    Article  CAS  Google Scholar 

  34. Haugh, M.C. et al. Analogues and analogue inhibitors of ppp(A2'p)nA. Their stability and biological activity. Eur. J. Biochem. 132, 77–84 (1983).

    Article  CAS  Google Scholar 

  35. Matsufuji, S. et al. Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80, 51–60 (1995).

    Article  CAS  Google Scholar 

  36. Ivanov, I.P., Gesteland, R.F., Matsufuji, S. & Atkins, J.F. Programmed frameshifting in the synthesis of mammalian antizyme is +1 in mammals, predominantly +1 in fission yeast, but −2 in budding yeast. RNA 4, 1230–1238 (1998).

    Article  CAS  Google Scholar 

  37. Karamysheva, Z.N. et al. Antizyme frameshifting as a functional probe of eukaryotic translational termination. Nucleic Acids Res. 31, 5949–5956 (2003).

    Article  CAS  Google Scholar 

  38. Howard, M.T. et al. Cell culture analysis of the regulatory frameshift event required for the expression of mammalian antizymes. Genes Cells 6, 931–941 (2001).

    Article  CAS  Google Scholar 

  39. Sekar, V., Atmar, V.J., Joshi, A.R., Krim, M. & Kuehn, G.D. Inhibition of ornithine decarboxylase in human fibroblast cells by type I and type II interferons. Biochem. Biophys. Res. Commun. 114, 950–954 (1983).

    Article  CAS  Google Scholar 

  40. Iwata, S. et al. Anti-tumor activity of antizyme which targets the ornithine decarboxylase (ODC) required for cell growth and transformation. Oncogene 18, 165–172 (1999).

    Article  CAS  Google Scholar 

  41. Welch, E.M., Wang, W. & Peltz, S.W. Translation termination: it's not the end of the story. In Translational Control of Gene Expression (eds. Sonenberg, N., Hershey, J.W.B. & Mathews, M.B.) 467–485 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2000).

    Google Scholar 

  42. Proweller, A. & Butler, J.S. Ribosomal association of poly(A)-binding protein in poly(A)-deficient Saccharomyces cerevisiae. J. Biol. Chem. 271, 10859–10865 (1996).

    Article  CAS  Google Scholar 

  43. Otero, L.J., Ashe, M.P. & Sachs, A.B. The yeast poly(A)-binding protein Pab1p stimulates in vitro poly(A)-dependent and cap-dependent translation by distinct mechanisms. EMBO J. 18, 3153–3163 (1999).

    Article  CAS  Google Scholar 

  44. Orlova, M., Yueh, A., Leung, J. & Goff, S.P. Reverse transcriptase of Moloney murine leukemia virus binds to eukaryotic release factor 1 to modulate suppression of translational termination. Cell 115, 319–331 (2003).

    Article  CAS  Google Scholar 

  45. Grentzmann, G., Ingram, J.A., Kelly, P.J., Gesteland, R.F. & Atkins, J.F. A dual-luciferase reporter system for studying recoding signals. RNA 4, 479–486 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Martin, O. Rouquier and D. Pappin for their help at the different steps of eRF3 protein purification and sequencing, A. Zhou for the gift of the Rnasel+/+ and Rnasel−/− mouse embryonic fibroblasts, J. Atkins for the gift of the antizyme dual luciferase plasmids and the members of the Peltz laboratory for helpful comments and critical reading of the manuscript. This work was supported by grants from the US National Institutes of Health (GM48631, AI057596) to S.W.P. and from the Association pour la Recherche contre le Cancer (4731) and La Ligue Contre le Cancer (Comités de l'Hérault et des Pyrénées-Orientales) for C.B. F.L.R. was partially funded by a postdoctoral award from the Philippe Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Catherine Bisbal or Stuart W Peltz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, F., Salehzada, T., Bisbal, C. et al. A newly discovered function for RNase L in regulating translation termination. Nat Struct Mol Biol 12, 505–512 (2005). https://doi.org/10.1038/nsmb944

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb944

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing