Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A telomerase holoenzyme protein enhances telomerase RNA assembly with telomerase reverse transcriptase

Abstract

Telomerase maintains the simple sequence repeats at chromosome ends, protecting cells from genomic rearrangement, proliferative senescence and death. The telomerase reverse transcriptase (TERT) and telomerase RNA (TER) alone can assemble into active enzyme in a heterologous cell extract, but the physiological process of telomerase biogenesis is more complex. The endogenous accumulation of Tetrahymena thermophila TERT and TER requires an additional telomerase holoenzyme protein, p65. Here, we reconstitute this cellular pathway for telomerase ribonucleoprotein biogenesis in vitro. We demonstrate that tandem RNA interaction domains in p65 recognize the sequence of the TER 3′ stem. Notably, the p65–TER complex recruits TERT much more efficiently than does TER alone. Using bacterially expressed p65 and TERT polypeptides, we show that p65 enhances TERT-TER interaction by a mechanism involving a conserved bulge in the protein-bridging TER molecule. These findings reveal a pathway for telomerase holoenzyme biogenesis that preassembles TER for TERT recruitment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Specific p65-TER interaction.
Figure 2: Direct interaction of p65 and TER.
Figure 3: Formation of ternary complex with p65, TER and TERT.
Figure 4: Protein association through a TER bridge.
Figure 5: Stimulation of TERT RNP assembly by p65.

Similar content being viewed by others

References

  1. Gubitz, A.K., Feng, W. & Dreyfuss, G. The SMN complex. Exp. Cell Res. 296, 51–56 (2004).

    Article  CAS  Google Scholar 

  2. Faustino, N.A. & Cooper, T.A. Pre-mRNA splicing and human disease. Genes Dev. 17, 419–437 (2003).

    Article  CAS  Google Scholar 

  3. Wong, J.M.Y. & Collins, K. Telomere maintenance and disease. Lancet 362, 983–988 (2003).

    Article  CAS  Google Scholar 

  4. Weeks, K.M. Protein-facilitated RNA folding. Curr. Opin. Struct. Biol. 7, 336–342 (1997).

    Article  CAS  Google Scholar 

  5. Weinrich, S.L. et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat. Genet. 7, 498–502 (1997).

    Article  Google Scholar 

  6. Mitchell, J.R., Cheng, J. & Collins, K. A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end. Mol. Cell. Biol. 19, 567–576 (1999).

    Article  CAS  Google Scholar 

  7. Mason, P.J. Stem cells, telomerase and dyskeratosis congenita. Bioessays 25, 126–133 (2003).

    Article  CAS  Google Scholar 

  8. Seto, A.G., Zaug, A.J., Sobel, S.G., Wolin, S.L. & Cech, T.R. Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle. Nature 401, 177–180 (1999).

    Article  CAS  Google Scholar 

  9. Witkin, K.L. & Collins, K. Holoenzyme proteins required for the physiological assembly and activity of telomerase. Genes Dev. 18, 1107–1118 (2004).

    Article  CAS  Google Scholar 

  10. Lingner, J. & Cech, T.R. Purification of telomerase from Euplotes aediculatus: requirement of a primer 3′ overhang. Proc. Natl. Acad. Sci. USA 93, 10712–10717 (1996).

    Article  CAS  Google Scholar 

  11. Aigner, S. et al. Euplotes telomerase contains an La motif protein produced by apparent translational frameshifting. EMBO J. 19, 6230–6239 (2000).

    Article  CAS  Google Scholar 

  12. Aigner, S., Postberg, J., Lipps, H.J. & Cech, T.R. The Euplotes La motif protein p43 has properties of a telomerase-specific subunit. Biochemistry 42, 5736–5747 (2003).

    Article  CAS  Google Scholar 

  13. Wolin, S.L. & Cedervall, T. The La protein. Annu. Rev. Biochem. 71, 375–403 (2002).

    Article  CAS  Google Scholar 

  14. Collins, K. & Gandhi, L. The reverse transcriptase component of the Tetrahymena telomerase ribonucleoprotein complex. Proc. Natl. Acad. Sci. USA 95, 8485–8490 (1998).

    Article  CAS  Google Scholar 

  15. Romero, D.P. & Blackburn, E.H. A conserved secondary structure for telomerase RNA. Cell 67, 343–353 (1991).

    Article  CAS  Google Scholar 

  16. ten Dam, E., van Belkum, A. & Pleij, K. A conserved pseudoknot in telomerase RNA. Nucleic Acids Res. 19, 6951 (1991).

    Article  CAS  Google Scholar 

  17. Lai, C.K., Mitchell, J.R. & Collins, K. RNA binding domain of telomerase reverse transcriptase. Mol. Cell. Biol. 21, 990–1000 (2001).

    Article  CAS  Google Scholar 

  18. Lai, C.K., Miller, M.C. & Collins, K. Template boundary definition in Tetrahymena telomerase. Genes Dev. 16, 415–420 (2002).

    Article  CAS  Google Scholar 

  19. Miller, M.C. & Collins, K. Telomerase recognizes its template by using an adjacent RNA motif. Proc. Natl. Acad. Sci. USA 99, 6585–6590 (2002).

    Article  CAS  Google Scholar 

  20. Lai, C.K., Miller, M.C. & Collins, K. Roles for RNA in telomerase nucleotide and repeat addition processivity. Mol. Cell 11, 1673–1683 (2003).

    Article  CAS  Google Scholar 

  21. Licht, J.D. & Collins, K. Telomerase RNA function in recombinant Tetrahymena telomerase. Genes Dev. 13, 1116–1125 (1999).

    Article  CAS  Google Scholar 

  22. Holt, S.E. et al. Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev. 13, 817–826 (1999).

    Article  CAS  Google Scholar 

  23. Bryan, T.M., Goodrich, K.J. & Cech, T.R. Tetrahymena telomerase is active as a monomer. Mol. Biol. Cell 14, 4794–4804 (2003).

    Article  CAS  Google Scholar 

  24. Aigner, S. & Cech, T.R. The Euplotes telomerase subunit p43 stimulates enzymatic activity and processivity in vitro. RNA 10, 1108–1118 (2004).

    Article  CAS  Google Scholar 

  25. Lingner, J., Hendrick, L.L. & Cech, T.R. Telomerase RNAs of different ciliates have a common secondary structure and a permuted template. Genes Dev. 8, 1984–1998 (1994).

    Article  CAS  Google Scholar 

  26. McCormick-Graham, M. & Romero, D.P. Ciliate telomerase RNA structural features. Nucleic Acids Res. 23, 1091–1097 (1995).

    Article  CAS  Google Scholar 

  27. Zaug, A.J. & Cech, T.R. Analysis of the structure of Tetrahymena nuclear RNAs in vivo: telomerase RNA, the self-splicing rRNA intron, and U2 snRNA. RNA 1, 363–374 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bhattacharyya, A. & Blackburn, E.H. Architecture of telomerase RNA. EMBO J. 13, 5721–5731 (1994).

    Article  CAS  Google Scholar 

  29. Sperger, J.M. & Cech, T.R. A stem-loop of Tetrahymena telomerase RNA distant from the template potentiates RNA folding and telomerase activity. Biochemistry 40, 7005–7016 (2001).

    Article  CAS  Google Scholar 

  30. Harrington, L. Biochemical aspects of telomerase function. Cancer Lett. 194, 139–154 (2003).

    Article  CAS  Google Scholar 

  31. Blackburn, E.H. The end of the (DNA) line. Nat. Struct. Biol. 7, 847–850 (2000).

    Article  CAS  Google Scholar 

  32. Chen, J.L. & Greider, C.W. Telomerase RNA structure and function: implications for dyskeratosis congenita. Trends Biochem. Sci. 29, 183–192 (2004).

    Article  CAS  Google Scholar 

  33. Williamson, J.R. After the ribosome structures: how are the subunits assembled? RNA 9, 165–167 (2003).

    Article  CAS  Google Scholar 

  34. Nottrott, S., Urlaub, H. & Luhrmann, R. Hierarchical, clustered protein interactions with U4/U6 snRNA: a biochemical role for U4/U6 proteins. EMBO J. 21, 5527–5538 (2002).

    Article  CAS  Google Scholar 

  35. Nagai, K. et al. Structure, function and evolution of the signal recognition particle. EMBO J. 22, 3479–3485 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Collins laboratory members and the RNA community for experimental discussion and comments on the manuscript. Funding was provided by a predoctoral fellowship from the US National Science Foundation (C.M.O.) and by US National Institutes of Health grant GM54198 (K.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen Collins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

TER stem I variants: EMSA competition. (PDF 245 kb)

Supplementary Fig. 2

No homomultimer. (PDF 437 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prathapam, R., Witkin, K., O'Connor, C. et al. A telomerase holoenzyme protein enhances telomerase RNA assembly with telomerase reverse transcriptase. Nat Struct Mol Biol 12, 252–257 (2005). https://doi.org/10.1038/nsmb900

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb900

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing