Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RNA polymerase I in yeast transcribes dynamic nucleosomal rDNA

Abstract

RNA polymerase (Pol) I–transcribed ribosomal genes of budding yeast exist as a tandem array (about 150 repeats) with transcription units separated by spacer sequences. Half of these rDNAs are inactivated by repressive chromatin structure, whereas the rest exist in an open conformation transcribed by closely spaced Pol I elongation complexes. Whereas previous studies have suggested that active rDNA is devoid of nucleosomal structure, we demonstrate that active rDNA has nucleosomal structure, according to chromatin immunoprecipitation and biochemical fractionation. Using a yeast strain with reduced numbers of all actively transcribed rDNA repeats, we show that rDNA exists in a dynamic chromatin structure of unphased nucleosomes. Furthermore, it is associated with chromatin-remodeling enzymes Chd1p, Isw1p and Isw2p, whose inactivation causes defects in transcription termination. We suggest that Pol I transcription, like that of Pol II, may be modulated by specific chromatin structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histones H2B and H3 are present across active rDNA repeats.
Figure 2: Biochemical analysis of Pol I–associated nucleosomes.
Figure 3: Chromatin-remodeling factors are associated with the entire rDNA repeat.
Figure 4: Chromatin remodeling factors Chd1p, Isw1p and Isw2p modulate Pol I's transcription termination profile.

Similar content being viewed by others

References

  1. Wolffe, A.P. Chromatin: Structure and Function 3rd edn. (Academic Press, San Diego, 1998).

    Google Scholar 

  2. Lee, T.I. & Young, R.A. Transcription of eukaryotic protein-coding genes. Annu. Rev. Genet. 34, 77–137 (2000).

    Article  CAS  Google Scholar 

  3. Flaus, A. & Owen-Hughes,, T. Mechanisms for ATP-dependent chromatin remodelling: farewell to the tuna-can octamer? Curr. Opin. Genet. Dev. 14, 165–173 (2004).

    Article  CAS  Google Scholar 

  4. Langst, G. & Becker, P.B. Nucleosome remodeling: one mechanism, many phenomena? Biochim. Biophys. Acta 1677, 58–63 (2004).

    Article  CAS  Google Scholar 

  5. Krebs, J.E. & Peterson, C.L. Understanding “active” chromatin: a historical perspective of chromatin remodeling. Crit. Rev. Eukaryot. Gene Expr. 10, 1–12 (2000).

    Article  CAS  Google Scholar 

  6. Alen, C. et al. A role for chromatin remodeling in transcriptional termination by RNA polymerase II. Mol. Cell 10, 1441–1452 (2002).

    Article  CAS  Google Scholar 

  7. Martens, J.A. & Winston, F. Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr. Opin. Genet. Dev. 13, 136–142 (2003).

    Article  CAS  Google Scholar 

  8. Mellor, J. & Morillon, A. ISWI complexes in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1677, 100–112 (2004).

    Article  CAS  Google Scholar 

  9. Sif, S. ATP-dependent nucleosome remodeling complexes: enzymes tailored to deal with chromatin. J. Cell. Biochem. 91, 1087–1098 (2004).

    Article  CAS  Google Scholar 

  10. Sims, R.J., III, Belotserkovskaya, R. & Reinberg, D. Elongation by RNA polymerase II: the short and long of it. Genes Dev. 18, 2437–2468 (2004).

    Article  CAS  Google Scholar 

  11. Proudfoot, N. New perspectives on connecting messenger RNA 3′ end formation to transcription. Curr. Opin. Cell Biol. 16, 272–278 (2004).

    Article  CAS  Google Scholar 

  12. Warner, J.R. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24, 437–440 (1999).

    Article  CAS  Google Scholar 

  13. Conconi, A., Widmer, R.M., Koller, T. & Sogo, J.M. Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell 57, 753–761 (1989).

    Article  CAS  Google Scholar 

  14. French, S.L., Osheim, Y.N., Cioci, F., Nomura, M. & Beyer, A.L. In exponentially growing Saccharomyces cerevisiae cells, rRNA synthesis is determined by the summed RNA polymerase I loading rate rather than by the number of active genes. Mol. Cell. Biol. 23, 1558–1568 (2003).

    Article  CAS  Google Scholar 

  15. Santoro, R. & Grummt, I. Epigenetic mechanism of rRNA gene silencing: temporal order of NoRC-mediated histone modification, chromatin remodeling, and DNA methylation. Mol. Cell. Biol. 25, 2539–2546 (2005).

    Article  CAS  Google Scholar 

  16. Strohner, R. et al. Recruitment of the nucleolar remodeling complex NoRC establishes ribosomal DNA silencing in chromatin. Mol. Cell. Biol. 24, 1791–1798 (2004).

    Article  CAS  Google Scholar 

  17. Zhou, Y., Santoro, R. & Grummt, I. The chromatin remodeling complex. NoRC targets HDAC1 to the ribosomal gene promoter and represses RNA polymerase I transcription. EMBO J. 21, 4632–4640 (2002).

    Article  CAS  Google Scholar 

  18. Moss, T. At the crossroads of growth control; making ribosomal RNA. Curr. Opin. Genet. Dev. 14, 210–217 (2004).

    Article  CAS  Google Scholar 

  19. Dammann, R., Lucchini, R., Koller, T. & Sogo, J.M. Chromatin structures and transcription of rDNA in yeast Saccharomyces cerevisiae. Nucleic Acids Res. 21, 2331–2338 (1993).

    Article  CAS  Google Scholar 

  20. Lohr, D. Chromatin structure differs between coding and upstream flanking sequences of the yeast 35S ribosomal genes. Biochemistry 22, 927–934 (1983).

    Article  CAS  Google Scholar 

  21. Belikov, S.V., Dzherbashyajan, A.R., Preobrazhenskaya, O.V., Karpov, V.L. & Mirzabekov, A.D. Chromatin structure of Drosophila melanogaster ribosomal genes. FEBS Lett. 273, 205–207 (1990).

    Article  CAS  Google Scholar 

  22. Dimitrov, S.I. et al. Binding of histones to Xenopus laevis ribosomal genes with different levels of expression. Eur. J. Biochem. 204, 977–981 (1992).

    Article  CAS  Google Scholar 

  23. Tongaonkar, P. et al. Histones are required for transcription of yeast rRNA genes by RNA polymerase I. Proc. Natl. Acad. Sci. USA 102, 10129–10134 (2005).

    Article  CAS  Google Scholar 

  24. Keener, J., Dodd, J.A., Lalo, D. & Nomura, M. Histones H3 and H4 are components of upstream activation factor required for the high-level transcription of yeast rDNA by RNA polymerase I. Proc. Natl. Acad. Sci. USA 94, 13458–13462 (1997).

    Article  CAS  Google Scholar 

  25. Bischler, N. et al. Localization of the yeast RNA polymerase I-specific subunits. EMBO J. 21, 4136–4144 (2002).

    Article  CAS  Google Scholar 

  26. Peyroche, G. et al. The recruitment of RNA polymerase I on rDNA is mediated by the interaction of the A43 subunit with Rrn3. EMBO J. 19, 5473–5482 (2000).

    Article  CAS  Google Scholar 

  27. Prescott, E.M. et al. Transcriptional termination by RNA polymerase I requires the small subunit Rpa12p. Proc. Natl. Acad. Sci. USA 101, 6068–6073 (2004).

    Article  CAS  Google Scholar 

  28. Kobayashi, T., Heck, D.J., Nomura, M. & Horiuchi, T. Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev. 12, 3821–3830 (1998).

    Article  CAS  Google Scholar 

  29. Morillon, A. et al. Isw1 chromatin remodeling ATPase coordinates transcription elongation and termination by RNA polymerase II. Cell 115, 425–435 (2003).

    Article  CAS  Google Scholar 

  30. Tran, H.G., Steger, D.J., Iyer, V.R. & Johnson, A.D. The chromo domain protein chd1p from budding yeast is an ATP-dependent chromatin-modifying factor. EMBO J. 19, 2323–2331 (2000).

    Article  CAS  Google Scholar 

  31. Kent, N.A., Karabetsou, N., Politis, P.K. & Mellor, J. In vivo chromatin remodeling by yeast ISWI homologs Isw1p and Isw2p. Genes Dev. 15, 619–626 (2001).

    Article  CAS  Google Scholar 

  32. Gelbart, M.E., Rechsteiner, T., Richmond, T.J. & Tsukiyama, T. Interactions of Isw2 chromatin remodelling complex with nucleosomal arrays: analyses using recombinant yeast histones and immobilised templates. Mol. Cell. Biol. 21, 2098–2106 (2001).

    Article  CAS  Google Scholar 

  33. Akhtar, A., Zink, D. & Becker, P.B. Chromodomains are protein-RNA interaction modules. Nature 407, 405–409 (2000).

    Article  CAS  Google Scholar 

  34. Abruzzi, K.C., Lacadie, S. & Rosbash, M. Biochemical analysis of TREX complex recruitment to intronless and intron-containing yeast genes. EMBO J. 23, 2620–2631 (2004).

    Article  CAS  Google Scholar 

  35. Birse, C.E., Lee, B.A., Hansen, K. & Proudfoot, N.J. Transcriptional termination signals for RNA polymerase II in fission yeast. EMBO J. 16, 3633–3643 (1997).

    Article  CAS  Google Scholar 

  36. Lang, W.H., Morrow, B.E., Ju, Q., Warner, J.R. & Reeder, R.H. A model for transcription termination by RNA polymerase I. Cell 79, 527–534 (1994).

    Article  CAS  Google Scholar 

  37. Simic, R. et al. Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J. 22, 1846–1856 (2003).

    Article  CAS  Google Scholar 

  38. Huang, S., Rothblum, L.I. & Chen, C. Ribosomal chromatin organisation. Biochem. Cell Biol. 84, 444–449 (2006).

    Article  CAS  Google Scholar 

  39. Kaufman, P.D., Kobayashi, R. & Stillman, B. Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev. 11, 345–357 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of N.J.P.'s laboratory for useful discussions. We are grateful to A. Johnson (University of California, San Francisco), J. Mellor (University of Oxford), M. Nomura (McGill University), M. Riva (Centre National de la Recherche Scientifique, Campus de Gif sur Yvette) and T. Tsukiyama (Fred Hutchinson Cancer Center) for providing the strains used in this work. We thank D. Bentley (University of Colorado, School of Medicine) for providing the H2B antibody. H.S.J. was supported by a Wellcome Trust Prize Studentship and J.K. by a fellowship from the Japan Heart Foundation. This work was supported by a Wellcome Trust Programme grant to N.J.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick J Proudfoot.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Transcription run-on titration. (PDF 142 kb)

Supplementary Table 1

Primers for chromatin immunoprecipitation. (PDF 70 kb)

Supplementary Table 2

Primers for biochemical chromatin analysis. (PDF 68 kb)

Supplementary Methods

PCR primer locations. (PDF 55 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, H., Kawauchi, J., Braglia, P. et al. RNA polymerase I in yeast transcribes dynamic nucleosomal rDNA. Nat Struct Mol Biol 14, 123–130 (2007). https://doi.org/10.1038/nsmb1199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1199

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing