Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells

Abstract

LINE-1s, or L1s, are highly abundant retrotransposons comprising 17% of the human genome. Most L1s are retrotransposition defective; nonetheless, there are 100 full-length L1s potentially capable of retrotransposition in the diploid genome. L1 retrotransposition may be detrimental to the host and thus needs to be controlled. Previous studies have identified sense and antisense promoters in the 5′ UTR of full-length human L1. Here we show that the resulting bidirectional transcripts can be processed to small interfering RNAs (siRNAs) that suppress retrotransposition by an RNA interference (RNAi) mechanism. We thus provide evidence that RNAi triggered by antisense transcripts may modulate human L1 retrotransposition efficiently and economically. L1-specific siRNAs are among the first natural siRNAs reported in mammalian systems. This work may contribute to understanding the regulatory role of abundant antisense transcripts in eukaryotic genomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the ASP in the human L1 5′ UTR.
Figure 2: Bidirectional transcripts of 5′ UTR generate L1-specific siRNAs.
Figure 3: ASP encodes an inhibitory effect on L1 retrotransposition.
Figure 4: ASP induces the mRNA degradation of 5′ UTR–derived transcripts.
Figure 5: RNAi is an intrinsic mechanism for human L1 retrotransposon silencing.

Similar content being viewed by others

References

  1. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  2. Ostertag, E.M. & Kazazian, H.H., Jr. Biology of mammalian L1 retrotransposons. Annu. Rev. Genet. 35, 501–538 (2001).

    Article  CAS  Google Scholar 

  3. Kazazian, H.H., Jr. Mobile elements: drivers of genome evolution. Science 303, 1626–1632 (2004).

    Article  CAS  Google Scholar 

  4. Wei, W. et al. Human L1 retrotransposition: cis preference versus trans complementation. Mol. Cell. Biol. 21, 1429–1439 (2001).

    Article  CAS  Google Scholar 

  5. Kulpa, D.A. & Moran, J.V. Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat. Struct. Mol. Biol. 13, 655–660 (2006).

    Article  CAS  Google Scholar 

  6. Hohjoh, H. & Singer, M.F. Sequence-specific single-strand RNA binding protein encoded by the human LINE-1 retrotransposon. EMBO J. 16, 6034–6043 (1997).

    Article  CAS  Google Scholar 

  7. Martin, S.L. & Bushman, F.D. Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol. Cell. Biol. 21, 467–475 (2001).

    Article  CAS  Google Scholar 

  8. Feng, Q., Moran, J.V., Kazazian, H.H., Jr. & Boeke, J.D. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87, 905–916 (1996).

    Article  CAS  Google Scholar 

  9. Moran, J.V. et al. High frequency retrotransposition in cultured mammalian cells. Cell 87, 917–927 (1996).

    Article  CAS  Google Scholar 

  10. Mathias, S.L., Scott, A.F., Kazazian, H.H., Jr., Boeke, J.D. & Gabriel, A. Reverse transcriptase encoded by a human transposable element. Science 254, 1808–1810 (1991).

    Article  CAS  Google Scholar 

  11. Luan, D.D., Korman, M.H., Jakubczak, J.L. & Eickbush, T.H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72, 595–605 (1993).

    Article  CAS  Google Scholar 

  12. Moran, J.V., DeBerardinis, R.J. & Kazazian, H.H., Jr. Exon shuffling by L1 retrotransposition. Science 283, 1530–1534 (1999).

    Article  CAS  Google Scholar 

  13. Morrish, T.A. et al. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat. Genet. 31, 159–165 (2002).

    Article  CAS  Google Scholar 

  14. Boissinot, S., Entezam, A. & Furano, A.V. Selection against deleterious LINE-1-containing loci in the human lineage. Mol. Biol. Evol. 18, 926–935 (2001).

    Article  CAS  Google Scholar 

  15. Bayne, E.H. & Allshire, R.C. RNA-directed transcriptional gene silencing in mammals. Trends Genet. 21, 370–373 (2005).

    Article  CAS  Google Scholar 

  16. Kim, V.N. Small RNAs: classification, biogenesis, and function. Mol. Cells 19, 1–15 (2005).

    Article  CAS  Google Scholar 

  17. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  Google Scholar 

  18. Zamore, P.D., Tuschl, T., Sharp, P.A. & Bartel, D.P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).

    Article  CAS  Google Scholar 

  19. Bernstein, E., Caudy, A.A., Hammond, S.M. & Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    Article  CAS  Google Scholar 

  20. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574 (2002).

    Article  CAS  Google Scholar 

  21. Lippman, Z. et al. Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471–476 (2004).

    Article  CAS  Google Scholar 

  22. Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123–132 (1999).

    Article  CAS  Google Scholar 

  23. Ketting, R.F., Haverkamp, T.H., van Luenen, H.G. & Plasterk, R.H. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99, 133–141 (1999).

    Article  CAS  Google Scholar 

  24. Sijen, T. & Plasterk, R.H. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 426, 310–314 (2003).

    Article  CAS  Google Scholar 

  25. Svoboda, P. et al. RNAi and expression of retrotransposons MuERV-L and IAP in preimplantation mouse embryos. Dev. Biol. 269, 276–285 (2004).

    Article  CAS  Google Scholar 

  26. Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489–501 (2005).

    Article  CAS  Google Scholar 

  27. Swergold, G.D. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol. Cell. Biol. 10, 6718–6729 (1990).

    Article  CAS  Google Scholar 

  28. Speek, M. Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol. Cell. Biol. 21, 1973–1985 (2001).

    Article  CAS  Google Scholar 

  29. Nigumann, P., Redik, K., Matlik, K. & Speek, M. Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics 79, 628–634 (2002).

    Article  CAS  Google Scholar 

  30. Athanikar, J.N., Badge, R.M. & Moran, J.V.A. YY1-binding site is required for accurate human LINE-1 transcription initiation. Nucleic Acids Res. 32, 3846–3855 (2004).

    Article  CAS  Google Scholar 

  31. Lavie, L., Maldener, E., Brouha, B., Meese, E.U. & Mayer, J. The human L1 promoter: variable transcription initiation sites and a major impact of upstream flanking sequence on promoter activity. Genome Res. 14, 2253–2260 (2004).

    Article  CAS  Google Scholar 

  32. Matranga, C., Tomari, Y., Shin, C., Bartel, D.P. & Zamore, P.D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607–620 (2005).

    Article  CAS  Google Scholar 

  33. Ostertag, E.M., Prak, E.T., DeBerardinis, R.J., Moran, J.V. & Kazazian, H.H., Jr. Determination of L1 retrotransposition kinetics in cultured cells. Nucleic Acids Res. 28, 1418–1423 (2000).

    Article  CAS  Google Scholar 

  34. Tchenio, T., Casella, J.F. & Heidmann, T. Members of the SRY family regulate the human LINE retrotransposons. Nucleic Acids Res. 28, 411–415 (2000).

    Article  CAS  Google Scholar 

  35. Yang, N., Zhang, L., Zhang, Y. & Kazazian, H.H., Jr. An important role for RUNX3 in human L1 transcription and retrotransposition. Nucleic Acids Res. 31, 4929–4940 (2003).

    Article  CAS  Google Scholar 

  36. Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).

    Article  Google Scholar 

  37. Weis, L. & Reinberg, D. Accurate positioning of RNA polymerase II on a natural TATA-less promoter is independent of TATA-binding-protein-associated factors and initiator-binding proteins. Mol. Cell. Biol. 17, 2973–2984 (1997).

    Article  CAS  Google Scholar 

  38. Parks, C.L. & Shenk, T. The serotonin 1a receptor gene contains a TATA-less promoter that responds to MAZ and Sp1. J. Biol. Chem. 271, 4417–4430 (1996).

    Article  CAS  Google Scholar 

  39. Soifer, H.S., Zaragoza, A., Peyvan, M., Behlke, M.A. & Rossi, J.J. A potential role for RNA interference in controlling the activity of the human LINE-1 retrotransposon. Nucleic Acids Res. 33, 846–856 (2005).

    Article  CAS  Google Scholar 

  40. Bernstein, E. et al. Dicer is essential for mouse development. Nat. Genet. 35, 215–217 (2003).

    Article  CAS  Google Scholar 

  41. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    Article  CAS  Google Scholar 

  42. Khan, H., Smit, A. & Boissinot, S. Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. Genome Res. 16, 78–87 (2006).

    Article  CAS  Google Scholar 

  43. Lu, C. et al. Elucidation of the small RNA component of the transcriptome. Science 309, 1567–1569 (2005).

    Article  CAS  Google Scholar 

  44. Shinagawa, T. & Ishii, S. Generation of Ski-knockdown mice by expressing a long double-strand RNA from an RNA polymerase II promoter. Genes Dev. 17, 1340–1345 (2003).

    Article  CAS  Google Scholar 

  45. Robb, G.B., Brown, K.M., Khurana, J. & Rana, T.M. Specific and potent RNAi in the nucleus of human cells. Nat. Struct. Mol. Biol. 12, 133–137 (2005).

    Article  CAS  Google Scholar 

  46. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  47. Bourc'his, D. & Bestor, T.H. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431, 96–99 (2004).

    Article  CAS  Google Scholar 

  48. Hata, K. & Sakaki, Y. Identification of critical CpG sites for repression of L1 transcription by DNA methylation. Gene 189, 227–234 (1997).

    Article  CAS  Google Scholar 

  49. Yu, F., Zingler, N., Schumann, G. & Stratling, W.H. Methyl-CpG-binding protein 2 represses LINE-1 expression and retrotransposition but not Alu transcription. Nucleic Acids Res. 29, 4493–4501 (2001).

    Article  CAS  Google Scholar 

  50. Perepelitsa-Belancio, V. & Deininger, P. RNA truncation by premature polyadenylation attenuates human mobile element activity. Nat. Genet. 35, 363–366 (2003).

    Article  CAS  Google Scholar 

  51. Han, J.S., Szak, S.T. & Boeke, J.D. Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429, 268–274 (2004).

    Article  CAS  Google Scholar 

  52. Watanabe, T. et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev. 20, 1732–1743 (2006).

    Article  CAS  Google Scholar 

  53. Yang, N., Zhang, L. & Kazazian, H.H., Jr. L1 retrotransposon-mediated stable gene silencing. Nucleic Acids Res. 33, e57 (2005).

    Article  Google Scholar 

  54. Yu, J., Li, Y., Ishizuka, T., Guenther, M.G. & Lazar, M.A.A. SANT motif in the SMRT corepressor interprets the histone code and promotes histone deacetylation. EMBO J. 22, 3403–3410 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Z. Mourelatos, P. Sniegowski, S. Liebhaber and J. Mayer for helpful discussion and technical advice and D. Babushok and J. Goodier for critical reading of the manuscript. This work was supported by US National Institutes of Health grant GM 045398.

Author information

Authors and Affiliations

Authors

Contributions

N.Y. contributed to the concept, performed the experiments, analyzed the data and wrote the manuscript. H.H.K. contributed to the concept, analyzed the data and revised the manuscript.

Corresponding author

Correspondence to Haig H Kazazian Jr..

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, N., Kazazian, H. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat Struct Mol Biol 13, 763–771 (2006). https://doi.org/10.1038/nsmb1141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing