Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Separate RNA-binding surfaces on the multifunctional La protein mediate distinguishable activities in tRNA maturation

Abstract

By sequence-specific binding to 3′ UUU-OH, the La protein shields precursor (pre)-RNAs from 3′ end digestion and is required to protect defective pre–transfer RNAs from decay. Although La is comprised of a La motif and an RNA-recognition motif (RRM), a recent structure indicates that the RRM β-sheet surface is not involved in UUU-OH recognition, raising questions as to its function. Progressively defective suppressor tRNAs in Schizosaccharomyces pombe reveal differential sensitivities to La and Rrp6p, a 3′ exonuclease component of pre-tRNA decay. 3′ end protection is compromised by mutations to the La motif but not the RRM surface. The most defective pre-tRNAs require a second activity of La, in addition to 3′ protection, that requires an intact RRM surface. The two activities of La in tRNA maturation map to its two conserved RNA-binding surfaces and suggest a modular model that has implications for its other ligands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pre–tRNA-M succumbs to rrp6+-mediated nuclear surveillance in S. pombe.
Figure 2: Different sensitivities of several tRNAUGASer alleles to sla1+ and rrp6+.
Figure 3: La mutations examined in this study.
Figure 4: RRM1 β-sheet surface mutations distinguish a second activity of La that is required for defective pre-tRNAUGASer maturation in vivo.
Figure 5: La RRM1 β-sheet surface mutants are active for pre-tRNA 3′ end protection and support La-dependent processing in vivo.
Figure 6: La RRM1 β-sheet surface mutations do not impair high-affinity UUU-OH binding to a short oligo-RNA or pre-tRNA.

Similar content being viewed by others

References

  1. Maraia, R.J. & Bayfield, M.A. The La protein-RNA complex surfaces. Mol. Cell 21, 149–152 (2006).

    Article  CAS  Google Scholar 

  2. Maraia, R.J. & Intine, R.V. Recognition of nascent RNA by the human La antigen: conserved and diverged features of structure and function. Mol. Cell. Biol. 21, 367–379 (2001).

    Article  CAS  Google Scholar 

  3. Wolin, S.L. & Cedervall, T. The La protein. Annu. Rev. Biochem. 71, 375–403 (2002).

    Article  CAS  Google Scholar 

  4. Hopper, A.K. & Phizicky, E.M. tRNA transfers to the limelight. Genes Dev. 17, 162–180 (2003).

    Article  CAS  Google Scholar 

  5. Pannone, B., Xue, D. & Wolin, S.L. A role for the yeast La protein in U6 snRNP assembly: evidence that the La protein is a molecular chaperone for RNA polymerase III transcripts. EMBO J. 17, 7442–7453 (1998).

    Article  CAS  Google Scholar 

  6. Intine, R.V., Tenenbaum, S.A., Sakulich, A.S., Keene, J.D. & Maraia, R.J. Differential phosphorylation and subcellular localization of La RNPs associated with precursor tRNAs and translation-related mRNAs. Mol. Cell 12, 1301–1307 (2003).

    Article  CAS  Google Scholar 

  7. Inada, M. & Guthrie, C. Identification of Lhp1p-associated RNAs by microarray analysis in Saccharomyces cerevisiae reveals association with coding and noncoding RNAs. Proc. Natl. Acad. Sci. USA 101, 434–439 (2004).

    Article  CAS  Google Scholar 

  8. Holcik, M. & Sonenberg, N. Translational control in stress and apoptosis. Nat. Rev. Mol. Cell Biol. 6, 318–327 (2005).

    Article  CAS  Google Scholar 

  9. Belisova, A. et al. RNA chaperone activity of protein components of human Ro RNPs. RNA 11, 1084–1094 (2005).

    Article  CAS  Google Scholar 

  10. Chakshusmathi, G., Kim, S.D., Rubinson, D.A. & Wolin, S.L. A La protein requirement for efficient pre-tRNA folding. EMBO J. 22, 6562–6572 (2003).

    Article  CAS  Google Scholar 

  11. Yoo, C.J. & Wolin, S.L. The yeast La protein is required for the 3′ endonucleolytic cleavage that matures tRNA precursors. Cell 89, 393–402 (1997).

    Article  CAS  Google Scholar 

  12. Johansson, M.J. & Bystrom, A.S. Dual function of the tRNA(m(5)U54)methyltransferase in tRNA maturation. RNA 8, 324–335 (2002).

    Article  CAS  Google Scholar 

  13. Anderson, J. et al. The essential Gcd10p-Gcd14p nuclear complex is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA. Genes Dev. 12, 3650–3662 (1998).

    Article  CAS  Google Scholar 

  14. Kadaba, S. et al. Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev. 18, 1227–1240 (2004).

    Article  CAS  Google Scholar 

  15. LaCava, J. et al. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121, 713–724 (2005).

    Article  CAS  Google Scholar 

  16. Vanacova, S. et al. A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol. 3, e189 (2005).

    Article  Google Scholar 

  17. Anderson, J.T. RNA turnover: unexpected consequences of being tailed. Curr. Biol. 15, R635–R638 (2005).

    Article  CAS  Google Scholar 

  18. Kadaba, S., Wang, X. & Anderson, J.T. Nuclear RNA surveillance in Saccharomyces cerevisiae: Trf4p-dependent polyadenylation of nascent hypomethylated tRNA and an aberrant form of 5S rRNA. RNA 12, 508–521 (2006).

    Article  CAS  Google Scholar 

  19. Alexandrov, A. et al. Rapid tRNA decay can result from lack of nonessential modifications. Mol. Cell 21, 87–96 (2006).

    Article  CAS  Google Scholar 

  20. Engelke, D.R. & Hopper, A.K. Modified view of tRNA: stability amid sequence diversity. Mol. Cell 21, 144–145 (2006).

    Article  CAS  Google Scholar 

  21. Teplova, M. et al. Structural basis for recognition and sequestration of UUU-OH 3′-termini of nascent RNA pol III transcripts by La, a rheumatic disease autoantigen. Mol. Cell 21, 75–85 (2006).

    Article  CAS  Google Scholar 

  22. Alfano, C. et al. Structural analysis of cooperative RNA binding by the La motif and central RRM domain of human La protein. Nat. Struct. Mol. Biol. 11, 323–329 (2004).

    Article  CAS  Google Scholar 

  23. Maris, C., Dominguez, C. & Allain, F.H. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J. 272, 2118–2131 (2005).

    Article  CAS  Google Scholar 

  24. Hamada, M., Sakulich, A.L., Koduru, S.B. & Maraia, R. Transcription termination by RNA polymerase III in fission yeast. A genetic and biochemical model system. J. Biol. Chem. 275, 29076–29081 (2000).

    Article  CAS  Google Scholar 

  25. Intine, R.V. et al. Transfer RNA maturation is controlled by phosphorylation of the human La antigen on serine 366. Mol. Cell 6, 339–348 (2000).

    Article  CAS  Google Scholar 

  26. Intine, R.V., Dundr, M., Misteli, T. & Maraia, R.J. Aberrant nuclear trafficking of La protein leads to disordered processing of associated precursor tRNAs. Mol. Cell 9, 1113–1123 (2002).

    Article  CAS  Google Scholar 

  27. Huang, Y., Intine, R.V., Mozlin, A., Hasson, S. & Maraia, R.J. Mutations in the RNA polymerase III subunit Rpc11p that decrease RNA 3′ cleavage activity increase 3′-terminal oligo(U) length and La-dependent tRNA processing. Mol. Cell. Biol. 25, 621–636 (2005).

    Article  CAS  Google Scholar 

  28. Briggs, M.W., Burkard, K.T. & Butler, J.S. Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3′ end formation. J. Biol. Chem. 273, 13255–13263 (1998).

    Article  CAS  Google Scholar 

  29. Allmang, C. et al. Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J. 18, 5399–5410 (1999).

    Article  CAS  Google Scholar 

  30. van Hoof, A., Lennertz, P. & Parker, R. Yeast exosome mutants accumulate 3′-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol. Cell. Biol. 20, 441–452 (2000).

    Article  CAS  Google Scholar 

  31. Dong, G., Chakshusmathi, G., Wolin, S.L. & Reinisch, K.M. Structure of the La motif: a winged helix domain mediates RNA binding via a conserved aromatic patch. EMBO J. 23, 1000–1007 (2004).

    Article  CAS  Google Scholar 

  32. Goodier, J.L., Fan, H. & Maraia, R.J. A carboxy-terminal basic region controls RNA polymerase III transcription factor activity of human La protein. Mol. Cell. Biol. 17, 5823–5832 (1997).

    Article  CAS  Google Scholar 

  33. Fan, H., Goodier, J.L., Chamberlain, J., Engelke, D.R. & Maraia, R.J. 5′ Processing of tRNA precursors can be modulated by the human La antigen phosphoprotein. Mol. Cell. Biol. 18, 3201–3211 (1998).

    Article  CAS  Google Scholar 

  34. Van Horn, D.J., Yoo, C.J., Xue, D., Shi, H. & Wolin, S.L. The La protein in Schizosaccharomyces pombe: a conserved yet dispensable phosphoprotein that functions in tRNA maturation. RNA 3, 1434–1443 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. O'Connor, J.P. & Peebles, C.L. In vivo pre-tRNA processing in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 425–439 (1991).

    Article  CAS  Google Scholar 

  36. Kenan, D.J. & Keene, J.D. La gets its wings. Nat. Struct. Mol. Biol. 11, 303–305 (2004).

    Article  CAS  Google Scholar 

  37. Rothstein, R.J. One-step gene disruption in yeast. Methods Enzymol. 101, 202–211 (1983).

    Article  CAS  Google Scholar 

  38. Ohi, R., Feoktistova, A. & Gould, K.L. Construction of vectors and a genomic library for use with his3-deficient strains of Schizosaccharomyces pombe. Gene 174, 315–318 (1996).

    Article  CAS  Google Scholar 

  39. Wach, A., Brachat, A., Pohlmann, R. & Philippsen, P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793–1808 (1994).

    Article  CAS  Google Scholar 

  40. Forsburg, S.L. Comparison of Schizosaccharomyces pombe expression systems. Nucleic Acids Res. 21, 2955–2956 (1993).

    Article  CAS  Google Scholar 

  41. Driscoll, C.T., Darlington, G.J. & Maraia, R.J. The conserved 7SK snRNA gene localizes to human chromosome 6 by homolog exclusion probing of somatic cell hybrid RNA. Nucleic Acids Res. 22, 722–725 (1994).

    Article  CAS  Google Scholar 

  42. Trotta, C.R. & Abelson, J. tRNA splicing: an RNA world add-on or an ancient reaction?. in The RNA World 2nd edn (eds. Gesteland, R.F., Cech, T.R. & Atkins, J.F.) 561–584 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 1999).

Download references

Acknowledgements

We thank M. Blum for media preparation, S. Hasson (University of California at Los Angeles) for tRNAUGASer(U47:6), D. Patel for providing coordinates before publication and J. Anderson for advice, as well as S. Wolin, The Friday Seminar, R. Crouch and members of the Laboratory of Molecular Growth Regulation for discussion, comments or both, and A. Hinnebusch for suggesting the hypomorph and for comments on the manuscript. This work was supported by the Intramural Research Program of the National Institute of Child Health and Human Development, US National Institutes of Health. R.J.M. serves as an Officer in the US Public Health Service.

Author information

Authors and Affiliations

Authors

Contributions

Y.H., M.A.B. and R.V.I. designed and performed experiments. R.J.M. designed experiments and wrote the manuscript

Corresponding author

Correspondence to Richard J Maraia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Bayfield, M., Intine, R. et al. Separate RNA-binding surfaces on the multifunctional La protein mediate distinguishable activities in tRNA maturation. Nat Struct Mol Biol 13, 611–618 (2006). https://doi.org/10.1038/nsmb1110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing