Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular determinants of gating at the potassium-channel selectivity filter

Abstract

We show that in the potassium channel KcsA, proton-dependent activation is followed by an inactivation process similar to C-type inactivation, and this process is suppressed by an E71A mutation in the pore helix. EPR spectroscopy demonstrates that the inner gate opens maximally at low pH regardless of the magnitude of the single-channel-open probability, implying that stationary gating originates mostly from rearrangements at the selectivity filter. Two E71A crystal structures obtained at 2.5 Å reveal large structural excursions of the selectivity filter during ion conduction and provide a glimpse of the range of conformations available to this region of the channel during gating. These data establish a mechanistic basis for the role of the selectivity filter during channel activation and inactivation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: KcsA is inactivated under steady-state conditions.
Figure 2: A pore-loop alanine scan identifies residues crucial for the inactivation event.
Figure 3: Pore-loop mutants influence the rate and extent of inactivation.
Figure 4: Two crystal structures of the E71A mutant.
Figure 5: Influence of Fab fragment binding on KcsA gating.
Figure 6: A mechanistic interpretation of KcsA gating.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. MacKinnon, R. Potassium channels and the atomic basis of selective ion conduction. Angew. Chem. Int. Edn Engl. 43, 4265–4277 (2004).

    Article  CAS  Google Scholar 

  2. Yellen, G. The voltage-gated potassium channels and their relatives. Nature 419, 35–42 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Schrempf, H. et al. A prokaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans. EMBO J. 14, 5170–5178 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cuello, L.G., Romero, J.G., Cortes, D.M. & Perozo, E. pH-dependent gating in the Streptomyces lividans K+ channel. Biochemistry 37, 3229–3236 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Heginbotham, L., LeMasurier, M., Kolmakova-Partensky, L. & Miller, C. Single Streptomyces lividans K+ channels: functional asymmetries and sidedness of proton activation. J. Gen. Physiol. 114, 551–560 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cordero, J.F., Cuello, L.G. & Perozo, E. Voltage-dependent gating at the KcsA selectivity filter. Nat. Struct. Mol. Biol., advance online publication 12 March 2006 (doi:10.1038/nsmb1070).

  7. Liu, Y.S., Sompornpisut, P. & Perozo, E. Structure of the KcsA channel intracellular gate in the open state. Nat. Struct. Biol. 8, 883–887 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Perozo, E., Cortes, D.M. & Cuello, L.G. Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. Nat. Struct. Biol. 5, 459–469 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Perozo, E., Cortes, D.M. & Cuello, L.G. Structural rearrangements underlying K+-channel activation gating. Science 285, 73–78 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Hackos, D.H., Chang, T.H. & Swartz, K.J. Scanning the intracellular S6 activation gate in the shaker K+ channel. J. Gen. Physiol. 119, 521–532 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jin, T. et al. The βγ subunits of G proteins gate a K+ channel by pivoted bending of a transmembrane segment. Mol. Cell 10, 469–481 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Liu, Y., Holmgren, M., Jurman, M.E. & Yellen, G. Gated access to the pore of a voltage-dependent K+ channel. Neuron 19, 175–184 (1997).

    Article  PubMed  Google Scholar 

  13. Loussouarn, G., Phillips, L.R., Masia, R., Rose, T. & Nichols, C.G. Flexibility of the Kir6.2 inward rectifier K+ channel pore. Proc. Natl. Acad. Sci. USA 98, 4227–4232 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiang, Y. et al. The open pore conformation of potassium channels. Nature 417, 523–526 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Jiang, Y. et al. X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Meuser, D., Splitt, H., Wagner, R. & Schrempf, H. Exploring the open pore of the potassium channel from Streptomyces lividans. FEBS Lett. 462, 447–452 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Demo, S.D. & Yellen, G. Ion effects on gating of the Ca2+-activated K+ channel correlate with occupancy of the pore. Biophys. J. 61, 639–648 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shapiro, M.S. & Decoursey, T.E. Selectivity and gating of the type-L potassium channel in mouse lymphocytes. J. Gen. Physiol. 97, 1227–1250 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Spruce, A.E., Standen, N.B. & Stanfield, P.R. Rubidium ions and the gating of delayed rectifier potassium channels of frog skeletal-muscle. J. Physiol. (Lond.) 411, 597–610 (1989).

    Article  CAS  Google Scholar 

  20. Swenson, R.P., Jr & Armstrong, C.M. K+ channels close more slowly in the presence of external K+ and Rb+. Nature 291, 427–429 (1981).

    Article  CAS  PubMed  Google Scholar 

  21. Lu, T. et al. Probing ion permeation and gating in a K+ channel with backbone mutations in the selectivity filter. Nat. Neurosci. 4, 239–246 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Alagem, N., Yesylevskyy, S. & Reuveny, E. The pore helix is involved in stabilizing the open state of inwardly rectifying K+ channels. Biophys. J. 85, 300–312 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chapman, M.L., VanDongen, H.M. & VanDongen, A.M. Activation-dependent subconductance levels in the drk1 K channel suggest a subunit basis for ion permeation and gating. Biophys. J. 72, 708–719 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Proks, P., Capener, C.E., Jones, P. & Ashcroft, F.M. Mutations within the P-loop of Kir6.2 modulate the intraburst kinetics of the ATP-sensitive potassium channel. J. Gen. Physiol. 118, 341–353 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zheng, J. & Sigworth, F.J. Selectivity changes during activation of mutant Shaker potassium channels. J. Gen. Physiol. 110, 101–117 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoshi, T., Zagotta, W.N. & Aldrich, R.W. Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron 7, 547–556 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Kiss, L., LoTurco, J. & Korn, S.J. Contribution of the selectivity filter to inactivation in potassium channels. Biophys. J. 76, 253–263 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, Y., Jurman, M.E. & Yellen, G. Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron 16, 859–867 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Lopez-Barneo, J., Hoshi, T., Heinemann, S.H. & Aldrich, R.W. Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Receptors Channels 1, 61–71 (1993).

    CAS  PubMed  Google Scholar 

  30. Lu, Z., Klem, A.M. & Ramu, Y. Ion conduction pore is conserved among potassium channels. Nature 413, 809–813 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Gao, L., Mi, X., Paajanen, V., Wang, K. & Fan, Z. Activation-coupled inactivation in the bacterial potassium channel KcsA. Proc. Natl. Acad. Sci. USA 102, 17630–17635 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou, Y., Morais-Cabral, J.H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature 414, 43–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Kuo, A. et al. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300, 1922–1926 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Yang, J., Yu, M., Jan, Y.N. & Jan, L.Y. Stabilization of ion selectivity filter by pore loop ion pairs in an inwardly rectifying potassium channel. Proc. Natl. Acad. Sci. USA 94, 1568–1572 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Choi, H. & Heginbotham, L. Functional influence of the pore helix glutamate in the KcsA K+ channel. Biophys. J. 86, 2137–2144 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ficker, E., Jarolimek, W., Kiehn, J., Baumann, A. & Brown, A.M. Molecular determinants of dofetilide block of HERG K+ channels. Circ. Res. 82, 386–395 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Kuriyan, J., Petsko, G.A., Levy, R.M. & Karplus, M. Effect of anisotropy and anharmonicity on protein crystallographic refinement. An evaluation by molecular dynamics. J. Mol. Biol. 190, 227–254 (1986).

    Article  CAS  PubMed  Google Scholar 

  38. Doyle, D.A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Berneche, S. & Roux, B. Energetics of ion conduction through the K+ channel. Nature 414, 73–77 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Zhou, Y. & MacKinnon, R. The occupancy of ions in the K+ selectivity filter: charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J. Mol. Biol. 333, 965–975 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Lenaeus, M.J., Vamvouka, M., Focia, P.J. & Gross, A. Structural basis of TEA blockade in a model potassium channel. Nat. Struct. Mol. Biol. 12, 454–459 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Delcour, A.H., Martinac, B., Adler, J. & Kung, C. Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys. J. 56, 631–636 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cortes, D.M. & Perozo, E. Structural dynamics of the Streptomyces lividans K+ channel (SKC1): oligomeric stoichiometry and stability. Biochemistry 36, 10343–10352 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Cortes, D.M., Cuello, L.G. & Perozo, E. Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating. J. Gen. Physiol. 117, 165–180 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Jones, T.A., Zou, J.-Y., Cowans, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  47. Brunger, A.T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Berneche, S. & Roux, B. Molecular dynamics of the KcsA K+ channel in a bilayer membrane. Biophys. J. 78, 2900–2917 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Woo, H.J., Dinner, A.R. & Roux, B. Grand canonical Monte Carlo simulations of water in protein environments. J. Chem. Phys. 121, 6392–6400 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Pettersen, E.F. et al. Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Bushweller, R. Nakamoto and S. Chakrapani for critically reading the manuscript; the staff at BNL X-4A and X-29 for assistance in data collection; R. MacKinnon (Rockefeller University) for providing the KcsA monoclonal antibody hybridoma cell line and F.W. Garcia for assistance with monoclonal antibodies; and H. Wu for generous access to her laboratory space and facilities. V. Vasquez provided assistance with mutagenesis and channel biochemistry; C. Gonzalez provided comments and experimental advice. This work was supported by grants from the US National Institutes of Health to E.P. and B.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Perozo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Inactivation kinetics depends on the extracellular K+ concentration (PDF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordero-Morales, J., Cuello, L., Zhao, Y. et al. Molecular determinants of gating at the potassium-channel selectivity filter. Nat Struct Mol Biol 13, 311–318 (2006). https://doi.org/10.1038/nsmb1069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1069

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing