Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Amyloid formation under physiological conditions proceeds via a native-like folding intermediate

Abstract

Although most proteins can assemble into amyloid-like fibrils in vitro under extreme conditions, how proteins form amyloid fibrils in vivo remains unresolved. Identifying rare aggregation-prone species under physiologically relevant conditions and defining their structural properties is therefore an important challenge. By solving the folding mechanism of the naturally amyloidogenic protein β-2-microglobulin at pH 7.0 and 37 °C and correlating the concentrations of different species with the rate of fibril elongation, we identify a specific folding intermediate, containing a non-native trans-proline isomer, as the direct precursor of fibril elongation. Structural analysis using NMR shows that this species is highly native-like but contains perturbation of the edge strands that normally protect β-sandwich proteins from self-association. The results demonstrate that aggregation pathways can involve self-assembly of highly native-like folding intermediates, and have implications for the prevention of this, and other, amyloid disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kinetic elucidation of the folding mechanism of wild-type β2m and P32G.
Figure 2: Amyloid-fibril formation from wild-type β2m and P32G at pH 7.0 and 37 °C.
Figure 3: Identification of conformational-exchange processes in P32G.
Figure 4: Analysis of 1H-15N HSQC spectra of wild-type β2m and P32G at pH 7.0, 37 °C.
Figure 5: Schematic free-energy landscape of wild-type β2m.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Dobson, C.M. Protein folding and misfolding. Nature 426, 884–890 (2003).

    Article  CAS  Google Scholar 

  2. Uversky, V.N. & Fink, A.L. Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim. Biophys. Acta 1698, 131–153 (2004).

    Article  CAS  Google Scholar 

  3. Colon, W. & Kelly, J.W. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry 31, 8654–8660 (1992).

    Article  CAS  Google Scholar 

  4. Calamai, M., Chiti, F. & Dobson, C.M. Amyloid fibril formation can proceed from different conformations of a partially unfolded protein. Biophys. J. 89, 4201–4210 (2005).

    Article  CAS  Google Scholar 

  5. Kelly, J.W. The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr. Opin. Struct. Biol. 8, 101–106 (1998).

    Article  CAS  Google Scholar 

  6. Vendruscolo, M. & Dobson, C.M. Towards complete descriptions of the free-energy landscapes of proteins. Philos. Transact. A Math. Phys. Eng. Sci. 363, 433–450 (2005).

    Article  CAS  Google Scholar 

  7. Jahn, T.R. & Radford, S.E. The Yin and Yang of protein folding. FEBS J. 272, 5962–5970 (2005).

    Article  CAS  Google Scholar 

  8. Chiti, F. et al. Kinetic partitioning of protein folding and aggregation. Nat. Struct. Biol. 9, 137–143 (2002).

    Article  CAS  Google Scholar 

  9. Lashuel, H.A., Lai, Z. & Kelly, J.W. Characterization of the transthyretin acid denaturation pathways by analytical ultracentrifugation: implications for wild-type, V30M, and L55P amyloid fibril formation. Biochemistry 37, 17851–17864 (1998).

    Article  CAS  Google Scholar 

  10. Booth, D.R. et al. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385, 787–793 (1997).

    Article  CAS  Google Scholar 

  11. Liu, K., Cho, H.S., Lashuel, H.A., Kelly, J.W. & Wemmer, D.E. A glimpse of a possible amyloidogenic intermediate of transthyretin. Nat. Struct. Biol. 7, 754–757 (2000).

    Article  CAS  Google Scholar 

  12. Khurana, R. et al. Partially folded intermediates as critical precursors of light chain amyloid fibrils and amorphous aggregates. Biochemistry 40, 3525–3535 (2001).

    Article  CAS  Google Scholar 

  13. Verdone, G. et al. The solution structure of human β2-microglobulin reveals the prodromes of its amyloid transition. Protein Sci. 11, 487–499 (2002).

    Article  CAS  Google Scholar 

  14. Jahn, T.R. & Radford, S.E. β2-microglobulin. in Amyloid Proteins: The Beta Sheet Conformation and Diseases Vol. 2 (ed. Sipe, J.D.) 667–695 (Wiley-VCH, Weinheim, Germany, 2005).

    Chapter  Google Scholar 

  15. Gejyo, F., Homma, N., Suzuki, Y. & Arakawa, M. Serum levels of β2-microglobulin as a new form of amyloid protein in patients undergoing long-term hemodialysis. N. Engl. J. Med. 314, 585–586 (1986).

    Article  CAS  Google Scholar 

  16. McParland, V.J., Kalverda, A.P., Homans, S.W. & Radford, S.E. Structural properties of an amyloid precursor of β2-microglobulin. Nat. Struct. Biol. 9, 326–331 (2002).

    Article  CAS  Google Scholar 

  17. Platt, G.W., McParland, V.J., Kalverda, A.P., Homans, S.W. & Radford, S.E. Dynamics in the unfolded state of β2-microglobulin studied by NMR. J. Mol. Biol. 346, 279–294 (2005).

    Article  CAS  Google Scholar 

  18. Chiti, F. et al. A partially structured species of β2-microglobulin is significantly populated under physiological conditions and involved in fibrillogenesis. J. Biol. Chem. 276, 46714–46721 (2001).

    Article  CAS  Google Scholar 

  19. Chiti, F. et al. Detection of two partially structured species in the folding process of the amyloidogenic protein β2-microglobulin. J. Mol. Biol. 307, 379–391 (2001).

    Article  CAS  Google Scholar 

  20. Kameda, A. et al. Nuclear magnetic resonance characterization of the refolding intermediate of β2-microglobulin trapped by non-native prolyl peptide bond. J. Mol. Biol. 348, 383–397 (2005).

    Article  CAS  Google Scholar 

  21. Naiki, H. et al. Establishment of a kinetic model of dialysis-related amyloid fibril extension in vitro. Amyloid 4, 223–232 (1997).

    Article  CAS  Google Scholar 

  22. Yamamoto, S. et al. Glycosaminoglycans enhance the trifluoroethanol-induced extension of β2-microglobulin-related amyloid fibrils at a neutral pH. J. Am. Soc. Nephrol. 15, 126–133 (2004).

    Article  CAS  Google Scholar 

  23. Balbach, J. & Schmid, F.X. Proline isomerisation and its catalysis in protein folding. in Mechanisms of Protein Folding 2nd edn (ed. Pain, R.H.) 212–249 (Oxford University Press, Oxford, 2000).

    Google Scholar 

  24. Benyamini, H., Gunasekaran, K., Wolfson, H. & Nussinov, R. β2-microglobulin amyloidosis: insights from conservation analysis and fibril modelling by protein docking techniques. J. Mol. Biol. 330, 159–174 (2003).

    Article  CAS  Google Scholar 

  25. Parker, M.J., Dempsey, C.E., Lorch, M. & Clarke, A.R. Acquisition of native β-strand topology during the rapid collapse phase of protein folding. Biochemistry 36, 13396–13405 (1997).

    Article  CAS  Google Scholar 

  26. Sambashivan, S., Liu, Y., Sawaya, M.R., Gingery, M. & Eisenberg, D. Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure. Nature 437, 266–269 (2005).

    Article  CAS  Google Scholar 

  27. Richardson, J.S. & Richardson, D.C. Natural β-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc. Natl. Acad. Sci. USA 99, 2754–2759 (2002).

    Article  CAS  Google Scholar 

  28. Elam, J.S. et al. Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutant proteins linked to familial ALS. Nat. Struct. Biol. 10, 461–467 (2003).

    Article  CAS  Google Scholar 

  29. Serag, A.A., Altenbach, C., Gingery, M., Hubbell, W.L. & Yeates, T.O. Arrangement of subunits and ordering of β-strands in an amyloid sheet. Nat. Struct. Biol. 9, 734–739 (2002).

    Article  CAS  Google Scholar 

  30. Trinh, C.H., Smith, D.P., Kalverda, A.P., Phillips, S.E. & Radford, S.E. Crystal structure of monomeric human β2-microglobulin reveals clues to its amyloidogenic properties. Proc. Natl. Acad. Sci. USA 99, 9771–9776 (2002).

    Article  CAS  Google Scholar 

  31. Jones, S., Smith, D.P. & Radford, S.E. Role of the N and C-terminal strands of β2-microglobulin in amyloid formation at neutral pH. J. Mol. Biol. 330, 935–941 (2003).

    Article  CAS  Google Scholar 

  32. Esposito, G. et al. Removal of the N-terminal hexapeptide from human β2-microglobulin facilitates protein aggregation and fibril formation. Protein Sci. 9, 831–845 (2000).

    Article  CAS  Google Scholar 

  33. Chien, P., Weissman, J.S. & DePace, A.H. Emerging principles of conformation-based prion inheritance. Annu. Rev. Biochem. 73, 617–656 (2004).

    Article  CAS  Google Scholar 

  34. Jimenez, J.L. et al. The protofilament structure of insulin amyloid fibrils. Proc. Natl. Acad. Sci. USA 99, 9196–9201 (2002).

    Article  CAS  Google Scholar 

  35. Barral, J.M., Broadley, S.A., Schaffar, G. & Hartl, F.U. Roles of molecular chaperones in protein misfolding diseases. Semin. Cell Dev. Biol. 15, 17–29 (2004).

    Article  CAS  Google Scholar 

  36. Mallis, R.J., Brazin, K.N., Fulton, D.B. & Andreotti, A.H. Structural characterization of a proline-driven conformational switch within the Itk SH2 domain. Nat. Struct. Biol. 9, 900–905 (2002).

    Article  CAS  Google Scholar 

  37. Eckert, B., Martin, A., Balbach, J. & Schmid, F.X. Prolyl isomerization as a molecular timer in phage infection. Nat. Struct. Mol. Biol. 12, 619–623 (2005).

    Article  CAS  Google Scholar 

  38. Lummis, S.C. et al. Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature 438, 248–252 (2005).

    Article  CAS  Google Scholar 

  39. Wigley, W.C. et al. A protein sequence that can encode native structure by disfavoring alternate conformations. Nat. Struct. Biol. 9, 381–388 (2002).

    CAS  PubMed  Google Scholar 

  40. Liou, Y.C. et al. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424, 556–561 (2003).

    Article  CAS  Google Scholar 

  41. Anfinsen, C.B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    Article  CAS  Google Scholar 

  42. Kad, N.M., Thomson, N.H., Smith, D.P., Smith, D.A. & Radford, S.E. β2-microglobulin and its deamidated variant, N17D form amyloid fibrils with a range of morphologies in vitro. J. Mol. Biol. 313, 559–571 (2001).

    Article  CAS  Google Scholar 

  43. Nilsson, M.R. Techniques to study amyloid fibril formation in vitro. Methods 34, 151–160 (2004).

    Article  CAS  Google Scholar 

  44. Myers, S.L. et al. A systematic study of the effect of physiological factors on β2-microglobulin amyloid formation at neutral pH. Biochemistry (in the press).

  45. O'Nuallain, B. & Wetzel, R. Conformational antibodies recognizing a generic amyloid fibril epitope. Proc. Natl. Acad. Sci. USA 99, 1485–1490 (2002).

    Article  CAS  Google Scholar 

  46. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  47. Johnson, B.A. & Blevins, R.A. NMRview: a computer program for the visualisation and analysis for NMR data. J. Biol. NMR 4, 603–614 (1994).

    Article  CAS  Google Scholar 

  48. Lapidus, L.J., Eaton, W.A. & Hofrichter, J. Measuring the rate of intramolecular contact formation in polypeptides. Proc. Natl. Acad. Sci. USA 97, 7220–7225 (2000).

    Article  CAS  Google Scholar 

  49. DeLano, W. The PyMOL Molecular Graphics System. (DeLano Scientific, San Carlos, California, USA, 2002).

  50. Gruebele, M. Protein folding: the free energy surface. Curr. Opin. Struct. Biol. 12, 161–168 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A.P. Kalverda, S.L. Myers, S. Jones and I.J. Morten for their help and support throughout this work, M.B. Pepys, G.A. Tennent, R. Wetzel and J.D. Fryer for kindly providing materials used and C.M. Dobson, F. Chiti and members of S.E.R.'s and S.W.H.'s group for helpful discussions. T.R.J. was supported by the Wellcome Trust, M.J.P. is a Biotechnology and Biological Sciences Research Council David Phillips Fellow and University of Leeds Research Fellow and S.E.R. is a Biotechnology and Biological Sciences Research Council Professorial Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheena E Radford.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Double-jump refolding experiment for wild-type β2m. (PDF 133 kb)

Supplementary Fig. 2

Double-jump unfolding kinetics for wild-type β2m. (PDF 333 kb)

Supplementary Fig. 3

Global analysis of the folding and unfolding kinetics of wild-type β2m. (PDF 183 kb)

Supplementary Fig. 4

Global analysis of the folding and unfolding kinetics of P32G β2m. (PDF 345 kb)

Supplementary Table 1

Parameters for wild-type β2m folding kinetics (PDF 65 kb)

Supplementary Table 2

Parameters for P32G β2m folding kinetics (PDF 58 kb)

Supplementary Methods

Methods used for double-jump experiments and kinetic modeling (PDF 97 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahn, T., Parker, M., Homans, S. et al. Amyloid formation under physiological conditions proceeds via a native-like folding intermediate. Nat Struct Mol Biol 13, 195–201 (2006). https://doi.org/10.1038/nsmb1058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1058

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing