Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Amyloid formation as a protein phase transition

Abstract

The formation of amyloid fibrils is a general class of protein self-assembly behaviour, which is associated with both functional biology and the development of a number of disorders, such as Alzheimer and Parkinson diseases. In this Review, we discuss how general physical concepts from the study of phase transitions can be used to illuminate the fundamental mechanisms of amyloid self-assembly. We summarize progress in the efforts to describe the essential biophysical features of amyloid self-assembly as a nucleation-and-growth process and discuss how master equation approaches can reveal the key molecular pathways underlying this process, including the role of secondary nucleation. Additionally, we outline how non-classical aspects of aggregate formation involving oligomers or biomolecular condensates have emerged, inspiring developments in understanding, modelling and modulating complex protein assembly pathways. Finally, we consider how these concepts can be applied to kinetics-based drug discovery and therapeutic design to develop treatments for protein aggregation diseases.

Key points

  • Amyloid formation is a transition between the dilute solution phase of a protein and a solid β-sheet-rich aggregated phase that occurs through nucleation-and-growth processes.

  • Uncontrolled formation of amyloid aggregates from normally soluble proteins is a general form of molecular malfunction.

  • Kinetic analysis using master equation approaches reveals the fundamental molecular steps underpinning this transition.

  • Processes such as secondary nucleation and the formation of on-pathway or off-pathway oligomers and liquid condensate intermediate states lead to a complex network of reaction pathways.

  • Kinetic equations can be combined with control theory to modulate or curtail amyloid formation and optimize therapeutic strategies for protein aggregation diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of various protein states and the architecture of amyloid fibrils.
Fig. 2: Comparison of classical and non-classical nucleation theories.
Fig. 3: Kinetics of amyloid fibril formation.

Similar content being viewed by others

References

  1. Knowles, T. P., Vendruscolo, M. & Dobson, C. M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 15, 384–396 (2014).

    Article  Google Scholar 

  2. Fuxreiter, M. & Vendruscolo, M. Generic nature of the condensed states of proteins. Nat. Cell Biol. 23, 587–594 (2021).

    Article  Google Scholar 

  3. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  ADS  Google Scholar 

  4. Selkoe, D. J. Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat. Cell Biol. 6, 1054–1061 (2004).

    Article  Google Scholar 

  5. Ashraf, G. et al. Protein misfolding and aggregation in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol. Disord. Drug Targets 13, 1280–1293 (2014).

    Article  Google Scholar 

  6. Vendruscolo, M. & Fuxreiter, M. Protein condensation diseases: therapeutic opportunities. Nat. Commun. 13, 5550 (2022).

    Article  ADS  Google Scholar 

  7. Knowles, T. P. & Buehler, M. J. Nanomechanics of functional and pathological amyloid materials. Nat. Nanotechnol. 6, 469–479 (2011).

    Article  ADS  Google Scholar 

  8. Makin, O. S. & Serpell, L. C. Structural characterisation of islet amyloid polypeptide fibrils. J. Mol. Biol. 335, 1279–1288 (2004).

    Article  Google Scholar 

  9. Sawaya, M. R., Hughes, M. P., Rodriguez, J. A., Riek, R. & Eisenberg, D. S. The expanding amyloid family: structure, stability, function, and pathogenesis. Cell 184, 4857–4873 (2021).

    Article  Google Scholar 

  10. Smith, J. F., Knowles, T. P., Dobson, C. M., MacPhee, C. E. & Welland, M. E. Characterization of the nanoscale properties of individual amyloid fibrils. Proc. Natl Acad. Sci. USA 103, 15806–15811 (2006).

    Article  ADS  Google Scholar 

  11. Yoon, G., Kwak, J., Kim, J. I., Na, S. & Eom, K. Mechanical characterization of amyloid fibrils using coarse-grained normal mode analysis. Adv. Funct. Mater. 21, 3454–3463 (2011).

    Article  Google Scholar 

  12. Sweers, K. K. M., Bennink, M. L. & Subramaniam, V. Nanomechanical properties of single amyloid fibrils. J. Phys. Condens. Matter 24, 243101 (2012).

    Article  ADS  Google Scholar 

  13. Andreasen, M. et al. Physical determinants of amyloid assembly in biofilm formation. mBio 10, e02279-18 (2019).

    Article  Google Scholar 

  14. Aguzzi, A. & Rajendran, L. The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64, 783–790 (2009).

    Article  Google Scholar 

  15. Cereghetti, G. et al. Reversible amyloids of pyruvate kinase couple cell metabolism and stress granule disassembly. Nat. Cell Biol. 23, 1085–1094 (2021).

    Article  Google Scholar 

  16. Cereghetti, G., Saad, S., Dechant, R. & Peter, M. Reversible, functional amyloids: towards an understanding of their regulation in yeast and humans. Cell Cycle 17, 1545–1558 (2018).

    Article  Google Scholar 

  17. Caudron, F. & Barral, Y. A super-assembly of Whi3 encodes memory of deceptive encounters by single cells during yeast courtship. Cell 155, 1244–1257 (2013).

    Article  Google Scholar 

  18. Chapman, M. R. et al. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295, 851–855 (2002).

    Article  ADS  Google Scholar 

  19. Maji, S. K. et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325, 328–332 (2009).

    Article  ADS  Google Scholar 

  20. Fowler, D. M. et al. Functional amyloid formation within mammalian tissue. PLoS Biol. 4, 0100–0107 (2006).

    Google Scholar 

  21. Wang, X., Li, Y. & Zhong, C. Amyloid-directed assembly of nanostructures and functional devices for bionanoelectronics. J. Mater. Chem. B 3, 4953–4958 (2015).

    Article  Google Scholar 

  22. Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).

    Article  Google Scholar 

  23. Kamada, A. et al. Controlled self-assembly of plant proteins into high-performance multifunctional nanostructured films. Nat. Commun. 12, 3529 (2021).

    Article  ADS  Google Scholar 

  24. Knowles, T. P. & Mezzenga, R. Amyloid fibrils as building blocks for natural and artificial functional materials. Adv. Mater. 28, 6546–6561 (2016).

    Article  Google Scholar 

  25. Wei, G. et al. Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem. Soc. Rev. 46, 4661–4708 (2017).

    Article  Google Scholar 

  26. Eisenberg, D. S. & Sawaya, M. R. Structural studies of amyloid proteins at the molecular level. Annu. Rev. Biochem. 86, 69–95 (2017).

    Article  Google Scholar 

  27. Daskalov, A. et al. Contribution of specific residues of the β-solenoid fold to HET-s prion function, amyloid structure and stability. PLoS Pathog. 10, e1004158 (2014).

    Article  Google Scholar 

  28. Jaroniec, C. P. et al. High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc. Natl Acad. Sci. USA 101, 711–716 (2004).

    Article  ADS  Google Scholar 

  29. Sarell, C. J. et al. Expanding the repertoire of amyloid polymorphs by co-polymerization of related protein precursors. J. Biol. Chem. 288, 7327–7337 (2013).

    Article  Google Scholar 

  30. Colvin, M. T. et al. Atomic resolution structure of monomorphic Aβ42 amyloid fibrils. J. Am. Chem. Soc. 138, 9663–9674 (2016).

    Article  Google Scholar 

  31. Fersht, A. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding (Macmillan, 1999).

  32. Meisl, G. et al. Uncovering the universality of self-replication in protein aggregation and its link to disease. Sci. Adv. 8, eabn6831 (2022).

    Article  Google Scholar 

  33. Michaels, T. C. T. et al. Dynamics of oligomer populations formed during the aggregation of Alzheimer’s Aβ42 peptide. Nat. Chem. 12, 445–451 (2020). This paper measures oligomer concentrations during the aggregation of Aβ42 peptide and performs a chemical kinetic analysis to reveal that oligomers either undergo a structural conversion into fibrils or dissociate back to monomers.

    Article  Google Scholar 

  34. Zurlo, E. et al. In situ kinetic measurements of α-synuclein aggregation reveal large population of shortlived oligomers. PLoS ONE 16, e0245548 (2021).

    Article  Google Scholar 

  35. Michaels, T. C. T., Lazell, H. W., Arosio, P. & Knowles, T. P. J. Dynamics of protein aggregation and oligomer formation governed by secondary nucleation. J. Chem. Phys. 143, 054901 (2015).

    Article  ADS  Google Scholar 

  36. Knowles, T. P. et al. An analytical solution to the kinetics of breakable filament assembly. Science 326, 1533–1537 (2009). This paper formulates the kinetics of amyloid formation in the master equation framework and solves experimentally relevant moment equations using a self-consistent approach.

    Article  ADS  Google Scholar 

  37. Meisl, G. et al. Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nat. Protoc. 11, 252–272 (2016).

    Article  Google Scholar 

  38. Linse, S. et al. Kinetic fingerprints differentiate the mechanisms of action of anti-Aβ antibodies. Nat. Struct. Mol. Biol. 27, 1125–1133 (2020). Using a combination of binding assays and kinetics measurements, this study classifies modulators of aggregation on the basis of their impacts on different fibril formation mechanisms.

    Article  Google Scholar 

  39. Michaels, T. C. et al. Chemical kinetics for bridging molecular mechanisms and macroscopic measurements of amyloid fibril formation. Annu. Rev. Phys. Chem. 69, 273–298 (2018).

    Article  ADS  Google Scholar 

  40. Cohen, S. I. A. et al. Nucleated polymerization with secondary pathways. I. Time evolution of the principal moments. J. Chem. Phys. 135, 065105 (2011).

    Article  ADS  Google Scholar 

  41. Meisl, G. et al. Scaling analysis reveals the mechanism and rates of prion replication in vivo. Nat. Struct. Mol. Biol. 28, 365–372 (2021).

    Article  Google Scholar 

  42. Michaels, T. C. T., Liu, L. X., Meisl, G. & Knowles, T. P. J. Physical principles of filamentous protein self-assembly kinetics. J. Phys. Condens. Matter 29, 153002 (2017).

    Article  ADS  Google Scholar 

  43. Michaels, T. C., Dear, A. J. & Knowles, T. P. Scaling and dimensionality in the chemical kinetics of protein filament formation. Int. Rev. Phys. Chem. 35, 679–703 (2016).

    Article  Google Scholar 

  44. Oosawa, F. & Asakura, S. Thermodynamics of the Polymerization of Protein (Academic Press, 1975).

  45. Oosawa, F. & Kasai, M. A theory of linear and helical aggregations of macromolecules. J. Mol. Biol. 4, 10–21 (1962).

    Article  Google Scholar 

  46. Kashchiev, D. Nucleation (Elsevier, 2000).

  47. Abraham, F. F. Homogeneous Nucleation Theory (Elsevier, 1974).

  48. Garside, J. & Davey, R. From Molecules to Crystallizers : An Introduction to Crystallization (Oxford Univ. Press, 2000).

  49. Dear, A. J. et al. Identification of on- and off-pathway oligomers in amyloid fibril formation. Chem. Sci. 11, 6236–6247 (2020).

    Article  Google Scholar 

  50. Šarić, A., Chebaro, Y. C., Knowles, T. P. & Frenkel, D. Crucial role of nonspecific interactions in amyloid nucleation. Proc. Natl Acad. Sci. USA 111, 17869–17874 (2014).

    Article  ADS  Google Scholar 

  51. Phan, T. T. & Schmit, J. D. Thermodynamics of huntingtin aggregation. Biophys. J. 118, 2989–2996 (2020).

    Article  ADS  Google Scholar 

  52. Küffner, A. M. et al. Sequestration within biomolecular condensates inhibits Aβ-42 amyloid formation. Chem. Sci. 12, 4373–4382 (2021).

    Article  Google Scholar 

  53. Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    Article  Google Scholar 

  54. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, aaf4382 (2017).

    Article  Google Scholar 

  55. Alberti, S. & Hyman, A. A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 22, 196–213 (2021).

    Article  Google Scholar 

  56. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article  Google Scholar 

  57. Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    Article  Google Scholar 

  58. Hellstrand, E., Boland, B., Walsh, D. M. & Linse, S. Amyloid β-protein aggregation produces highly reproducible kinetic data and occurs by a two-phase process. ACS Chem. Neurosci. 1, 13–18 (2010).

    Article  Google Scholar 

  59. Lattanzi, V., Bernfur, K., Sparr, E., Olsson, U. & Linse, S. Solubility of Aβ40 peptide. JCIS Open 4, 100024 (2021).

    Article  Google Scholar 

  60. Stephan, P. & Hammer, J. A new model for nucleate boiling heat transfer. Wärme Stoffübertragung 30, 119–125 (1994).

    Article  ADS  Google Scholar 

  61. Kolev, N. I. How accurately can we predict nucleate boiling? Exp. Therm. Fluid Sci. 10, 370–378 (1995).

    Article  Google Scholar 

  62. Steefel, C. I. & Van Cappellen, P. A new kinetic approach to modeling water–rock interaction: the role of nucleation, precursors, and Ostwald ripening. Geochim. Cosmochim. Acta 54, 2657–2677 (1990).

    Article  ADS  Google Scholar 

  63. Webber, K. L., Falster, A. U., Simmons, W. B. & Foord, E. E. The role of diffusion-controlled oscillatory nucleation in the formation of line rock in pegmatite–aplite dikes. J. Petrol. 38, 1777–1791 (1997).

    Article  ADS  Google Scholar 

  64. Erdemir, D., Lee, A. Y. & Myerson, A. S. Nucleation of crystals from solution: classical and two-step models. Acc. Chem. Res. 42, 621–629 (2009).

    Article  Google Scholar 

  65. Ostwald, W. Studien über die Bildung und Umwandlung fester Körper. Zeitschrift für Physikalische Chemie 22U, 289–330 (1897).

    Article  Google Scholar 

  66. Vekilov, P. G. The two-step mechanism of nucleation of crystals in solution. Nanoscale 2, 2346–2357 (2010).

    Article  ADS  Google Scholar 

  67. Sear, R. P. The non-classical nucleation of crystals: microscopic mechanisms and applications to molecular crystals, ice and calcium carbonate. Int. Mater. Rev. 57, 328–356 (2012).

    Article  Google Scholar 

  68. Gebauer, D., Kellermeier, M., Gale, J. D., Bergström, L. & Cölfen, H. Pre-nucleation clusters as solute precursors in crystallisation. Chem. Soc. Rev. 43, 2348–2371 (2014).

    Article  Google Scholar 

  69. Kashchiev, D., Vekilov, P. G. & Kolomeisky, A. B. Kinetics of two-step nucleation of crystals. J. Chem. Phys. 122, 244706 (2005).

    Article  ADS  Google Scholar 

  70. Peng, Y. et al. Two-step nucleation mechanism in solid–solid phase transitions. Nat. Mater. 14, 101–108 (2015).

    Article  ADS  Google Scholar 

  71. Savage, J. R. & Dinsmore, A. D. Experimental evidence for two-step nucleation in colloidal crystallization. Phys. Rev. Lett. 102, 15–18 (2009).

    Article  Google Scholar 

  72. van Meel, J. A., Page, A. J., Sear, R. P. & Frenkel, D. Two-step vapor-crystal nucleation close below triple point. J. Chem. Phys. 129, 204505 (2008).

    Article  ADS  Google Scholar 

  73. Zhang, L. & Schmit, J. D. Pseudo-one-dimensional nucleation in dilute polymer solutions. Phys. Rev. E 93, 060401 (2016).

    Article  ADS  Google Scholar 

  74. Phan, T. M. & Schmit, J. D. Conformational entropy limits the transition from nucleation to elongation in amyloid aggregation. Biophys. J. 121, 2931–2939 (2022).

    Article  ADS  Google Scholar 

  75. Chung, S. Y., Kim, Y. M., Kim, J. G. & Kim, Y. J. Multiphase transformation and Ostwalds rule of stages during crystallization ofametal phosphate. Nat. Phys. 5, 68–73 (2009).

    Article  Google Scholar 

  76. Levin, A. et al. Ostwald’s rule of stages governs structural transitions and morphology of dipeptide supramolecular polymers. Nat. Commun. 5, 5219 (2014). B oc-diphenylanaline peptide forms a high-density liquid phase before self-assembling into fibrillar aggregates. This study explicitly measures the free energy changes of these transitions.

    Article  ADS  Google Scholar 

  77. Wallace, A. F. et al. Microscopic evidence for liquid–liquid separation in supersaturated CaCO3 solutions. Science 341, 885–889 (2013).

    Article  ADS  Google Scholar 

  78. Yuan, C. et al. Nucleation and growth of amino acid and peptide supramolecular polymers through liquid–liquid phase separation. Angew. Chem. 131, 18284–18291 (2019).

    Article  ADS  Google Scholar 

  79. Michaels, T. C. et al. Reaction rate theory for supramolecular kinetics: application to protein aggregation. Mol. Phys. 116, 3055–3065 (2018).

    Article  ADS  Google Scholar 

  80. Dear, A. J. et al. Kinetic diversity of amyloid oligomers. Proc. Natl Acad. Sci. USA 117, 28–31 (2020).

    Article  Google Scholar 

  81. Šarić, A., Michaels, T. C., Zaccone, A., Knowles, T. P. & Frenkel, D. Kinetics of spontaneous filament nucleation via oligomers: insights from theory and simulation. J. Chem. Phys. 145, 211926 (2016).

    Article  ADS  Google Scholar 

  82. Huang, C., Ghanati, E. & Schmit, J. D. Theory of sequence effects in amyloid aggregation. J. Phys. Chem. B 122, 5567–5578 (2018).

    Article  Google Scholar 

  83. Jia, Z., Beugelsdijk, A., Chen, J. & Schmit, J. D. The levinthal problem in amyloid aggregation: sampling of a flat reaction space. J. Phys. Chem. B 121, 1576–1586 (2017).

    Article  Google Scholar 

  84. Jia, Z., Schmit, J. D. & Chen, J. Amyloid assembly is dominated by misregistered kinetic traps on an unbiased energy landscape. Proc. Natl Acad. Sci. USA 117, 10322–10328 (2020).

    Article  ADS  Google Scholar 

  85. Zimmermann, M. R. et al. Mechanism of secondary nucleation at the single fibril level from direct observations of Aβ42 aggregation. J. Am. Chem. Soc. 143, 16621–16629 (2021).

    Article  Google Scholar 

  86. Michaels, T. C. T. & Knowles, T. P. J. Mean-field master equation formalism for biofilament growth. Am. J. Phys. 82, 476–483 (2014).

    Article  ADS  Google Scholar 

  87. Teimouri, H. & Kolomeisky, A. B. Power of stochastic kinetic models: from biological signaling and antibiotic activities to T cell activation and cancer initiation dynamics. WIREs Comput. Mol. Sci. 12, e1612 (2022).

    Article  Google Scholar 

  88. Klindziuk, A., Meadowcroft, B. & Kolomeisky, A. B. A mechanochemical model of transcriptional bursting. Biophys. J. 118, 1213–1220 (2020).

    Article  ADS  Google Scholar 

  89. Majumdar, S. N., Sabhapandit, S. & Schehr, G. Random walk with random resetting to the maximum position. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92, 052126 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  90. Méndez, V. & Campos, D. Characterization of stationary states in random walks with stochastic resetting. Phys. Rev. E 93, 022106 (2016).

    Article  ADS  Google Scholar 

  91. Bianconi, G., Sun, H., Rapisardi, G. & Arenas, A. Message-passing approach to epidemic tracing and mitigation with apps. Phys. Rev. Res. 3, L012014 (2021).

    Article  Google Scholar 

  92. Ortega, E., Machado, D. & Lage-Castellanos, A. Dynamics of epidemics from cavity master equations: susceptible-infectious-susceptible models. Phys. Rev. E 105, 024308 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  93. Cohen, S. I. A., Vendruscolo, M., Dobson, C. M. & Knowles, T. P. J. Nucleated polymerization with secondary pathways. II. Determination of self-consistent solutions to growth processes described by non-linear master equations. J. Chem. Phys. 135, 065106 (2011).

    Article  ADS  Google Scholar 

  94. Michaels, T. C., Cohen, S. I., Vendruscolo, M., Dobson, C. M. & Knowles, T. P. Hamiltonian dynamics of protein filament formation. Phys. Rev. Lett. 116, 3–8 (2016). This article re-formulates the aggregation kinetic equations in terms of a Hamiltonian dynamics problem, leading to integrated rate laws that are directly applicable to experimental data.

    Article  Google Scholar 

  95. Michaels, T. C. T., Garcia, G. A. & Knowles, T. P. J. Asymptotic solutions of the Oosawa model for the length distribution of biofilaments. J. Chem. Phys. 140, 194906 (2014).

    Article  ADS  Google Scholar 

  96. Michaels, T. C. T. & Knowles, T. P. J. Kinetic theory of protein filament growth: self-consistent methods and perturbative techniques. Int. J. Mod. Phys. B 29, 1530002 (2015).

    Article  ADS  MATH  Google Scholar 

  97. Cohen, S. I. A. et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl Acad. Sci. USA 110, 9758–9763 (2013).

    Article  ADS  Google Scholar 

  98. Meisl, G. et al. Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides. Proc. Natl Acad. Sci. USA 111, 9384–9389 (2014).

    Article  ADS  Google Scholar 

  99. Yang, X. et al. On the role of sidechain size and charge in the aggregation of Aβ42 with familial mutations. Proc. Natl Acad. Sci. USA 115, E5849–E5858 (2018).

    Article  Google Scholar 

  100. Xu, Y. et al. Tuning the rate of aggregation of hIAPP into amyloid using small-molecule modulators of assembly. Nat. Commun. 13, 1040 (2022).

    Article  ADS  Google Scholar 

  101. Chow, R., Blindt, R., Chivers, R. & Povey, M. A study on the primary and secondary nucleation of ice by power ultrasound. Ultrasonics 43, 227–230 (2005).

    Article  Google Scholar 

  102. Anwar, J., Khan, S. & Lindfors, L. Secondary crystal nucleation: nuclei breeding factory uncovered. Angew. Chem. Int. Ed. 54, 14681–14684 (2015).

    Article  Google Scholar 

  103. Bishop, M. F. & Ferrone, F. A. Kinetics of nucleation-controlled polymerization. A perturbation treatment for use with a secondary pathway. Biophys. J. 46, 631–644 (1984).

    Article  ADS  Google Scholar 

  104. Ferrone, F. A., Hofrichter, J. & Eaton, W. A. Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism. J. Mol. Biol. 183, 611–631 (1985).

    Article  Google Scholar 

  105. Buell, A. K. et al. Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proc. Natl Acad. Sci. USA 111, 7671–7676 (2014).

    Article  ADS  Google Scholar 

  106. Rodriguez Camargo, D. C. et al. Proliferation of tau 304–380 fragment aggregates through autocatalytic secondary nucleation. ACS Chem. Neurosci. 12, 4406–4415 (2021).

    Article  Google Scholar 

  107. Ruschak, A. M. & Miranker, A. D. Fiber-dependent amyloid formation as catalysis of an existing reaction pathway. Proc. Natl Acad. Sci. USA 104, 12341–12346 (2007).

    Article  ADS  Google Scholar 

  108. Schlamadinger, D. E. & Miranker, A. D. Fiber-dependent and -independent toxicity of islet amyloid polypeptide. Biophys. J. 107, 2559–2566 (2014).

    Article  ADS  Google Scholar 

  109. Šaric, A. et al. Physical determinants of the self-replication of protein fibrils. Nat. Phys. 12, 874–880 (2016).

    Article  Google Scholar 

  110. Arosio, P., Knowles, T. P. & Linse, S. On the lag phase in amyloid fibril formation. Phys. Chem. Chem. Phys. 17, 7606–7618 (2015).

    Article  Google Scholar 

  111. Szavits-Nossan, J. et al. Inherent variability in the kinetics of autocatalytic protein self-assembly. Phys. Rev. Lett. 113, 098101 (2014).

    Article  ADS  Google Scholar 

  112. Michaels, T. C. et al. Fluctuations in the kinetics of linear protein self-assembly. Phys. Rev. Lett. 116, 258103 (2016).

    Article  ADS  Google Scholar 

  113. Sinnige, T. et al. Kinetic analysis reveals that independent nucleation events determine the progression of polyglutamine aggregation in C. elegans. Proc. Natl Acad. Sci. USA 118, e2021888118 (2021).

    Article  Google Scholar 

  114. Knowles, T. P. et al. Observation of spatial propagation of amyloid assembly from single nuclei. Proc. Natl Acad. Sci. USA 108, 14746–14751 (2011).

    Article  ADS  Google Scholar 

  115. Nagel-Steger, L., Owen, M. C. & Strodel, B. An account of amyloid oligomers: facts and figures obtained from experiments and simulations. ChemBioChem 17, 657–676 (2016).

    Article  Google Scholar 

  116. Shea, D. & Daggett, V. Amyloid-β oligomers: multiple moving targets. Biophysica 2, 91–110 (2022).

    Article  Google Scholar 

  117. Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112 (2007).

    Article  Google Scholar 

  118. Hampel, H. et al. The amyloid-β pathway in Alzheimer’s disease. Mol. Psychiatry 26, 5481–5503 (2021).

    Article  Google Scholar 

  119. Walsh, D. M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).

    Article  ADS  Google Scholar 

  120. Krausser, J., Knowles, T. P. & Šarić, A. E. Physical mechanisms of amyloid nucleation on fluid membranes. Proc. Natl Acad. Sci. USA 117, 33090–33098 (2020).

    Article  ADS  Google Scholar 

  121. Chandra, B. et al. Major reaction coordinates linking transient amyloid-β oligomers to fibrils measured at atomic level. Biophys. J. 113, 805–816 (2017).

    Article  ADS  Google Scholar 

  122. Tay, W. M., Huang, D., Rosenberry, T. L. & Paravastu, A. K. The Alzheimer’s amyloid-β(1–42) peptide forms off-pathway oligomers and fibrils that are distinguished structurally by intermolecular organization. J. Mol. Biol. 425, 2494–2508 (2013).

    Article  Google Scholar 

  123. Vosough, F. & Barth, A. Characterization of homogeneous and heterogeneous amyloid-β42 oligomer preparations with biochemical methods and infrared spectroscopy reveals a correlation between infrared spectrum and Oligomer size. ACS Chem. Neurosci. 12, 473–488 (2021).

    Article  Google Scholar 

  124. König, A. S. et al. Structural details of amyloid β oligomers in complex with human prion protein as revealed by solid-state MAS NMR spectroscopy. J. Biol. Chem. 296, 100499 (2021).

    Article  Google Scholar 

  125. Zhou, L. & Kurouski, D. Structural characterization of individual α-synuclein oligomers formed at different stages of protein aggregation by atomic force microscopy-infrared spectroscopy. Anal. Chem. 92, 6806–6810 (2020).

    Article  Google Scholar 

  126. Banerjee, S., Sun, Z., Hayden, E. Y., Teplow, D. B. & Lyubchenko, Y. L. Nanoscale dynamics of amyloid β-42 oligomers as revealed by high-speed atomic force microscopy. ACS Nano 11, 12202–12209 (2017).

    Article  Google Scholar 

  127. Konno, H. et al. Dynamics of oligomer and amyloid fibril formation by yeast prion Sup35 observed by high-speed atomic force microscopy. Proc. Natl Acad. Sci. USA 117, 7831–7836 (2020).

    Article  ADS  Google Scholar 

  128. Yang, J. et al. Direct observation of oligomerization by single molecule fluorescence reveals a multistep aggregation mechanism for the yeast prion protein Ure2. J. Am. Chem. Soc. 140, 2493–2503 (2018).

    Article  Google Scholar 

  129. Cremades, N., Chen, S. & Dobson, C. Structural characteristics of α-synuclein oligomers. in International Review of Cell and Molecular Biology 1st edn, Vol. 329, 79–143 (Elsevier, 2017).

  130. Danzer, K. M., Krebs, S. K., Wolff, M., Birk, G. & Hengerer, B. Seeding induced by α-synuclein oligomers provides evidence for spreading of α-synuclein pathology. J. Neurochem. 111, 192–203 (2009).

    Article  Google Scholar 

  131. Zhang, Z., Chen, H., Bai, H. & Lai, L. Molecular dynamics simulations on the oligomer-formation process of the GNNQQNY peptide from yeast prion protein Sup35. Biophys. J. 93, 1484–1492 (2007).

    Article  ADS  Google Scholar 

  132. Zheng, J., Ma, B., Tsai, C. J. & Nussinov, R. Structural stability and dynamics of an amyloid-forming peptide GNNQQNY from the yeast prion sup-35. Biophys. J. 91, 824–833 (2006).

    Article  ADS  Google Scholar 

  133. Hinshelwood, C. N. 136. On the chemical kinetics of autosynthetic systems. J. Chem. Soc. 1, 745 (1952).

    Article  Google Scholar 

  134. Iyer-Biswas, S., Crooks, G. E., Scherer, N. F. & Dinner, A. R. Universality in stochastic exponential growth. Phys. Rev. Lett. 113, 028101 (2014).

    Article  ADS  Google Scholar 

  135. Iyer-Biswas, S. et al. Scaling laws governing stochastic growth and division of single bacterial cells. Proc. Natl Acad. Sci. USA 111, 15912–15917 (2014).

    Article  ADS  Google Scholar 

  136. Sun, Y., Wang, B., Ge, X. & Ding, F. Distinct oligomerization and fibrillization dynamics of amyloid core sequences of amyloid-beta and islet amyloid polypeptide. Phys. Chem. Chem. Phys. 19, 28414–28423 (2017).

    Article  Google Scholar 

  137. Sun, Y. et al. Amyloid self-assembly of hIAPP8-20 via the accumulation of helical oligomers, α-helix to β-sheet transition, and formation of β-barrel intermediates. Small 15, 1805166 (2019).

    Article  Google Scholar 

  138. Sun, Y., Ge, X., Xing, Y., Wang, B. & Ding, F. β-Barrel oligomers as common intermediates of peptides self-assembling into cross-β aggregates. Sci. Rep. 8, 10353 (2018).

    Article  ADS  Google Scholar 

  139. Wang, L., Schubert, D., Sawaya, M. R., Eisenberg, D. & Riek, R. Multidimensional structure–activity relationship of a protein in its aggregated states. Angew. Chem. 122, 3996–4000 (2010).

    Article  ADS  Google Scholar 

  140. Braun, G. A., Dear, A. J., Sanagavarapu, K., Zetterberg, H. & Linse, S. Amyloid-β peptide 37, 38 and 40 individually and cooperatively inhibit amyloid-β 42 aggregation. Chem. Sci. 13, 2423–2439 (2022).

    Article  Google Scholar 

  141. Toprakcioglu, Z. et al. Adsorption free energy predicts amyloid protein nucleation rates. Proc. Natl Acad. Sci. USA 119, e2109718119 (2022).

    Article  Google Scholar 

  142. Pilkington, E. H. et al. Star polymers reduce islet amyloid polypeptide toxicity via accelerated amyloid aggregation. Biomacromolecules 18, 4249–4260 (2017).

    Article  Google Scholar 

  143. Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).

    Article  Google Scholar 

  144. Lafontaine, D. L., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2021).

    Article  Google Scholar 

  145. Yang, P. et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell 181, 325–345.e28 (2020).

    Article  Google Scholar 

  146. Aulas, A. et al. G3BP1 promotes stress-induced RNA granule interactions to preserve polyadenylated mRNA. J. Cell Biol. 209, 73–84 (2015).

    Article  Google Scholar 

  147. Guillén-Boixet, J. et al. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 181, 346–361 (2020).

    Article  Google Scholar 

  148. Söding, J., Zwicker, D., Sohrabi-Jahromi, S., Boehning, M. & Kirschbaum, J. Mechanisms for active regulation of biomolecular condensates. Trends Cell Biol. 30, 4–14 (2020).

    Article  Google Scholar 

  149. Tsai, W. C. et al. Arginine demethylation of G3BP1 promotes stress granule assembly. J. Biol. Chem. 291, 22671–22685 (2016).

    Article  Google Scholar 

  150. Morris, G. E. The Cajal body. Biochim. Biophys. Acta Mol. Cell Res. 1783, 2108–2115 (2008).

    Article  Google Scholar 

  151. Baltanás, F. C. et al. Nucleolar disruption and cajal body disassembly are nuclear hallmarks of DNA damage-induced neurodegeneration in Purkinje cells. Brain Pathol. 21, 374–388 (2011).

    Article  Google Scholar 

  152. Hondele, M., Heinrich, S., de Los Rios, P. & Weis, K. Membraneless organelles: phasing out of equilibrium. Emerging Top. Life Sci. 4, 343–354 (2020).

    Article  Google Scholar 

  153. Adame-Arana, O., Weber, C. A., Zaburdaev, V., Prost, J. & Jülicher, F. Liquid phase separation controlled by pH. Biophys. J. 119, 1590–1605 (2020).

    Article  ADS  Google Scholar 

  154. Klosin, A. et al. Phase separation provides a mechanism to reduce noise in cells. Science 367, 464–468 (2020).

    Article  ADS  Google Scholar 

  155. Bauermann, J., Laha, S., McCall, P. M., Jülicher, F. & Weber, C. A. Chemical kinetics and mass action in coexisting phases. J. Am. Chem. Soc. 144, 19294–19304 (2022).

    Article  Google Scholar 

  156. Weber, C., Michaels, T. & Mahadevan, L. Spatial control of irreversible protein aggregation. eLife 8, e42315 (2019).

    Article  Google Scholar 

  157. Semenov, A. N. & Rubinstein, M. Thermoreversible gelation in solutions of associative polymers. 1. Statics. Macromolecules 31, 1373–1385 (1998). This article considers the solvation of polymers consisting of sticker groups that are capable of forming pair-wise bonds and spacer groups that do not have the bond-forming capability and derives the free energy of the polymer solution in a mean-field picture.

    Article  ADS  Google Scholar 

  158. Zhou, Q. et al. ATP regulates RNA-driven cold inducible RNA binding protein phase separation. Protein Sci. 30, 1438–1453 (2021).

    Article  Google Scholar 

  159. Guilhas, B. et al. ATP-driven separation of liquid phase condensates in bacteria. Mol. Cell 79, 293–303.e4 (2020).

    Article  Google Scholar 

  160. Qamar, S. et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation–π interactions. Cell 173, 720–734.e15 (2018).

    Article  Google Scholar 

  161. Henninger, J. E. et al. RNA-mediated feedback control of transcriptional condensates. Cell 184, 207–225.e24 (2021).

    Article  Google Scholar 

  162. Krainer, G. et al. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nat. Commun. 12, 1085 (2021).

    Article  ADS  Google Scholar 

  163. Musacchio, A. On the role of phase separation in the biogenesis of membraneless compartments. EMBO J. 41, e109952 (2022).

    Article  Google Scholar 

  164. Yao, J. H., Elder, K. R., Guo, H. & Grant, M. Theory and simulation of Ostwald ripening. Phys. Rev. B 47, 14110–14125 (1993).

    Article  ADS  Google Scholar 

  165. Lipiński, W. P. et al. Biomolecular condensates can both accelerate and suppress aggregation of α-synuclein. Sci. Adv. 8, eabq6495 (2022).

    Article  ADS  Google Scholar 

  166. Dada, S. T. et al. Spontaneous nucleation and fast aggregate-dependent proliferation of α-synuclein aggregates within liquid condensates at neutral pH. Proc. Natl Acad. Sci. USA 120, e2208792120 (2023).

    Article  Google Scholar 

  167. Liu-Yesucevitz, L. et al. ALS-linked mutations enlarge TDP-43-enriched neuronal RNA granules in the dendritic Arbor. J. Neurosci. 34, 4167–4174 (2014).

    Article  Google Scholar 

  168. Conicella, A. E., Zerze, G. H., Mittal, J. & Fawzi, N. L. ALS mutations disrupt phase separation mediated by α-Helical structure in the TDP-43 low-complexity C-terminal domain. Structure 24, 1537–1549 (2016).

    Article  Google Scholar 

  169. Martin, E. W. et al. Interplay of folded domains and the disordered low-complexity domain in mediating hnRNPA1 phase separation. Nucleic Acids Res. 49, 2931–2945 (2021).

    Article  ADS  Google Scholar 

  170. Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

    Article  Google Scholar 

  171. Liu, Y. et al. Molecular insights into the self-assembly of block copolymer suckerin polypeptides into nanoconfined β-sheets. Small 18, 2202642 (2022).

    Article  Google Scholar 

  172. Xing, Y. et al. Amyloid aggregation under the lens of liquid–liquid phase separation. J. Phys. Chem. Lett. 12, 368–378 (2021).

    Article  Google Scholar 

  173. Shen, Y. et al. Solid/liquid coexistence during aging of FUS condensates. bioRxiv https://doi.org/10.1101/2022.08.15.503964 (2022).

    Article  Google Scholar 

  174. Wen, J. et al. Conformational expansion of tau in condensates promotes irreversible aggregation. J. Am. Chem. Soc. 143, 13056–13064 (2021).

    Article  Google Scholar 

  175. Farag, M. et al. Condensates formed by prion-like low-complexity domains have small-world network structures and interfaces defined by expanded conformations. Nat. Commun. 13, 7722 (2022).

    Article  ADS  Google Scholar 

  176. Huggins, M. L. Solutions of long chain compounds. J. Chem. Phys. 9, 440 (1941).

    Article  ADS  Google Scholar 

  177. Flory, P. J. Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 51–61 (1942).

    Article  ADS  Google Scholar 

  178. Overbeek, J. T. G. & Voorn, M. J. Phase separation in polyelectrolyte solutions. Theory of complex coacervation. J. Cell. Comp. Physiol. 49, 7–26 (1957).

    Article  Google Scholar 

  179. Choi, J. M., Holehouse, A. S. & Pappu, R. V. Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys. 49, 107–133 (2020).

    Article  Google Scholar 

  180. Dobrynin, A. V. & Rubinstein, M. Flory theory of a polyampholyte chain. J. Phys. II 5, 677–695 (1995).

    Google Scholar 

  181. Das, R. K. & Pappu, R. V. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc. Natl Acad. Sci. USA 110, 13392–13397 (2013).

    Article  ADS  Google Scholar 

  182. Sawle, L. & Ghosh, K. A theoretical method to compute sequence dependent configurational properties in charged polymers and proteins. J. Chem. Phys. 143 (2015).

  183. Amin, A. N., Lin, Y. H., Das, S. & Chan, H. S. Analytical theory for sequence-specific binary fuzzy complexes of charged intrinsically disordered proteins. J. Phys. Chem. B 124, 6709–6720 (2020).

    Article  Google Scholar 

  184. McCarty, J., Delaney, K. T., Danielsen, S. P., Fredrickson, G. H. & Shea, J. E. Complete phase diagram for liquid–liquid phase separation of intrinsically disordered proteins. J. Phys. Chem. Lett. 10, 1644–1652 (2019).

    Article  Google Scholar 

  185. Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020).

    Article  ADS  Google Scholar 

  186. Rumyantsev, A. M. et al. Controlling complex coacervation via random polyelectrolyte sequences. ACS Macro Lett. 8, 1296–1302 (2019).

    Article  Google Scholar 

  187. Statt, A., Casademunt, H., Brangwynne, C. P. & Panagiotopoulos, A. Z. Model for disordered proteins with strongly sequence-dependent liquid phase behavior. J. Chem. Phys. 152, 075101 (2020).

    Article  ADS  Google Scholar 

  188. Fredrickson, G. The Equilibrium Theory of Inhomogeneous Polymers, Ch. 4 (Oxford Univ. Press, 2005).

  189. Lin, Y. H., Song, J., Forman-Kay, J. D. & Chan, H. S. Random-phase-approximation theory for sequence-dependent, biologically functional liquid–liquid phase separation of intrinsically disordered proteins. J. Mol. Liq. 228, 176–193 (2017).

    Article  Google Scholar 

  190. Chen, G. P., Voora, V. K., Agee, M. M., Balasubramani, S. G. & Furche, F. Random-phase approximation methods. Annu. Rev. Phys. Chem. 68, 421–445 (2017).

    Article  ADS  Google Scholar 

  191. Wessén, J., Pal, T., Das, S., Lin, Y. H. & Chan, H. S. A simple explicit-solvent model of polyampholyte phase behaviors and its ramifications for dielectric effects in biomolecular condensates. J. Phys. Chem. B 125, 4337–4358 (2021).

    Article  Google Scholar 

  192. Lin, Y.-H., Wessén, J., Pal, T., Das, S. & Chan, H. S. Numerical techniques for applications of analytical theories to sequence-dependent phase separations of intrinsically disordered proteins. In Phase-Separated Biomolecular Condensates (eds Zhou, H. X. et al.) 51–94 (Humana Press, 2023).

  193. Rumyantsev, A. M., Jackson, N. E. & De Pablo, J. J. Polyelectrolyte complex coacervates: recent developments and new frontiers. Annu. Rev. Cond. Matter Phys. 12, 155–176 (2021).

    Article  ADS  Google Scholar 

  194. Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).

    Article  Google Scholar 

  195. Berry, J., Brangwynne, C. P. & Haataja, M. Physical principles of intracellular organization via active and passive phase transitions. Rep. Prog. Phys. 81, 046601 (2018).

    Article  ADS  Google Scholar 

  196. Dignon, G. L., Best, R. B. & Mittal, J. Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu. Rev. Phys. Chem. 71, 53–75 (2020).

    Article  ADS  Google Scholar 

  197. Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).

    Article  Google Scholar 

  198. Bari, K. J. & Prakashchand, D. D. Fundamental challenges and outlook in simulating liquid–liquid phase separation of intrinsically disordered proteins. J. Phys. Chem. Lett. 12, 1644–1656 (2021).

    Article  Google Scholar 

  199. Ponomarenko, E. A. et al. The size of the human proteome: the width and depth. Int. J. Anal. Chem. 2016, 7436849 (2016).

    Article  Google Scholar 

  200. Potters, M. & Bouchaud, J.-P. A First Course in Random Matrix Theory (Cambridge Univ. Press, 2020).

  201. Sear, R. P. & Cuesta, J. A. Instabilities in complex mixtures with a large number of components. Phys. Rev. Lett. 91, 2–5 (2003).

    Article  Google Scholar 

  202. Shrinivas, K. & Brenner, M. P. Phase separation in fluids with many interacting components. Proc. Natl Acad. Sci. USA 118, e2108551118 (2021).

    Article  MathSciNet  Google Scholar 

  203. Zwicker, D. & Laan, L. Evolved interactions stabilize many coexisting phases in multicomponent liquids. Proc. Natl Acad. Sci. USA 119, e2201250119 (2022).

    Article  Google Scholar 

  204. Hasecke, F. et al. Origin of metastable oligomers and their effects on amyloid fibril self-assembly. Chem. Sci. 9, 5937–5948 (2018).

    Article  Google Scholar 

  205. Arosio, P. et al. Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation. Nat. Commun. 7, 10948 (2016).

    Article  ADS  Google Scholar 

  206. Habchi, J. et al. An anticancer drug suppresses the primary nucleation reaction that initiates the production of the toxic Aβ42 aggregates linked with Alzheimer’s disease. Sci. Adv. 2, e1501244 (2016).

    Article  Google Scholar 

  207. Sun, Y. et al. Amphiphilic surface chemistry of fullerenols is necessary for inhibiting the amyloid aggregation of alpha-synuclein NACore. Nanoscale 11, 11933–11945 (2019).

    Article  Google Scholar 

  208. Vácha, R., Linse, S. & Lund, M. Surface effects on aggregation kinetics of amyloidogenic peptides. J. Am. Chem. Soc. 136, 11776–11782 (2014).

    Article  Google Scholar 

  209. Aprile, F. A. et al. Selective targeting of primary and secondary nucleation pathways in Aβ42 aggregation using a rational antibody scanning method. Sci. Adv. 3, e1700488 (2017).

    Article  Google Scholar 

  210. Morimoto, R. I. & Cuervo, A. M. Protein homeostasis and aging: taking care of proteins from the cradle to the grave. J. Gerontol. A Biol. Sci. Med. Sci. 64, 167–170 (2009).

    Article  Google Scholar 

  211. Hipp, M. S., Kasturi, P. & Hartl, F. U. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 20, 421–435 (2019).

    Article  Google Scholar 

  212. Michaels, T. C. et al. Thermodynamic and kinetic design principles for amyloid-aggregation inhibitors. Proc. Natl Acad. Sci. USA 117, 24251–24257 (2020).

    Article  ADS  Google Scholar 

  213. Chaudhuri, T. K. & Paul, S. Protein-misfolding diseases and chaperone-based therapeutic approaches. FEBS J. 273, 1331–1349 (2006).

    Article  Google Scholar 

  214. Cox, D., Carver, J. A. & Ecroyd, H. Preventing α-synuclein aggregation: the role of the small heat-shock molecular chaperone proteins. Biochim. Biophys. Acta Mol. Basis Dis. 1842, 1830–1843 (2014).

    Article  Google Scholar 

  215. Labbadia, J. et al. Suppression of protein aggregation by chaperone modification of high molecular weight complexes. Brain 135, 1180–1186 (2012).

    Article  Google Scholar 

  216. Mok, S. A. et al. Mapping interactions with the chaperone network reveals factors that protect against tau aggregation. Nat. Struct. Mol. Biol. 25, 384–393 (2018).

    Article  Google Scholar 

  217. Ikenoue, T. et al. A rationally designed bicyclic peptide remodels Aβ42 aggregation in vitro and reduces its toxicity in a worm model of Alzheimer’s disease. Sci. Rep. 10, 15280 (2020).

    Article  ADS  Google Scholar 

  218. Heller, G. T. et al. Small-molecule sequestration of amyloid-β as a drug discovery strategy for Alzheimer’s disease. Sci. Adv. 6, eabb5924 (2020).

    Article  ADS  Google Scholar 

  219. Chia, S. et al. SAR by kinetics for drug discovery in protein misfolding diseases. Proc. Natl Acad. Sci. USA 115, 10245–10250 (2018).

    Article  ADS  Google Scholar 

  220. Lenhart, S. & Workman, J. T. Optimal Control Applied to Biological Models (Chapman and Hall/CRC, 2007).

  221. Fekri, S., Athans, M. & Pascoal, A. Issues, progress and new results in robust adaptive control. Int. J. Adapt. Control Sig. Process. 20, 519–579 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  222. Geering, H. P. Optimal Control with Engineering Applications (Springer, 2007).

  223. Pontryagin, L. S. Mathematical Theory of Optimal Processes (CRC Press, 1987).

  224. Dear, A. J., Michaels, T. C. T., Knowles, T. P. J. & Mahadevan, L. Feedback control of protein aggregation. J. Chem. Phys. 155, 064102 (2021).

    Article  ADS  Google Scholar 

  225. Michaels, T. C., Weber, C. A. & Mahadevan, L. Optimal control strategies for inhibition of protein aggregation. Proc. Natl Acad. Sci. USA 116, 14593–14598 (2019). This study combines optimal control theory with aggregation kinetics to find optimal drug administration protocols. Theoretical results are then tested against experiments performed on Caenorhabditis elegans.

    Article  ADS  Google Scholar 

  226. Burke, K. A., Janke, A. M., Rhine, C. L. & Fawzi, N. L. Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II. Mol. Cell 60, 231–241 (2015).

    Article  Google Scholar 

  227. Murakami, T. et al. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron 88, 678–690 (2015).

    Article  Google Scholar 

  228. Ambadipudi, S., Biernat, J., Riedel, D., Mandelkow, E. & Zweckstetter, M. Liquid–liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein tau. Nat. Commun. 8, 275 (2017).

    Article  ADS  Google Scholar 

  229. Pytowski, L., Lee, C. F., Foley, A. C., Vaux, D. J. & Jean, L. Liquid–liquid phase separation of type II diabetes-associated IAPP initiates hydrogelation and aggregation. Proc. Natl Acad. Sci. USA 117, 12050–12061 (2020).

    Article  ADS  Google Scholar 

  230. Yang, J. & Yang, X. Phase transition of huntingtin: factors and pathological relevance. Front. Genet. 11, 754 (2020).

    Article  Google Scholar 

  231. Posey, A. E. et al. Profilin reduces aggregation and phase separation of huntingtin N-terminal fragments by preferentially binding to soluble monomers and oligomers. J. Biol. Chem. 293, 3734–3746 (2018).

    Article  Google Scholar 

  232. Ray, S. et al. α-Synuclein aggregation nucleates through liquid–liquid phase separation. Nat. Chem. 12, 705–716 (2020).

    Article  Google Scholar 

  233. Tange, H. et al. Liquid–liquid phase separation of full-length prion protein initiates conformational conversion in vitro. J. Biol. Chem. 296, 100367 (2021).

    Article  Google Scholar 

  234. Eisenberg, D. & Jucker, M. The amyloid state of proteins in human diseases. Cell 148, 1188–1203 (2012).

    Article  Google Scholar 

  235. Ford, I. J. Nucleation theorems, the statistical mechanics of molecular clusters, and a revision of classical nucleation theory. Phys. Rev. E 56, 5615–5629 (1997).

    Article  ADS  Google Scholar 

  236. Feller, W. An Introduction to Probability Theory and Its Applications, Vol. 2 (John Wiley & Sons, 2008).

  237. De Gennes, P.-G. Scaling Concepts in Polymer Physics, Ch. 3 (Cornell Univ. Press, 1979).

  238. Tanaka, F. Polymer Physics, Ch. 2 (Cambridge Univ. Press, 2011).

  239. Gibbs, J. W. On the equilibrium of heterogeneous substances. Am. J. Sci. Arts 16, 441 (1874).

    ADS  Google Scholar 

  240. Mao, S., Kuldinow, D., Haataja, M. P. & Košmrlj, A. Phase behavior and morphology of multicomponent liquid mixtures. Soft Matter 15, 1297–1311 (2019).

    Article  ADS  Google Scholar 

  241. Qian, D., Michaels, T. C. & Knowles, T. P. Analytical solution to the FloryHuggins model. J. Phys. Chem. Lett. 13, 7853–7860 (2022). This article studies the Flory–Huggins phase separation model with one solute species. An analytical expression that approximates the binodal phase boundary to a high degree is derived using a self-consistent approach.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Institute for the Physics of Living Systems, University College London (T.C.T.M.), the Swedish Research Council (2015-00143) (S.L.), the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) through the ERC grant PhysProt (agreement no. 337969) (T.P.J.K.), the BBSRC (T.P.J.K.), the Newman Foundation (T.P.J.K.) and the Wellcome Trust Collaborative Award 203249/Z/16/Z (T.P.J.K.). The authors thank C. Flandoli for help with illustrations.

Author information

Authors and Affiliations

Authors

Contributions

T.C.T.M. and D.Q. researched data for the article. All authors contributed substantially to discussion of the content. T.C.T.M. and D.Q. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Thomas C. T. Michaels or Tuomas P. J. Knowles.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Feng Ding, Birgit Strodel and Jeremy Schmit for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

β-Sheet

Common protein secondary structures consisting of strands of amino acids arranged parallel or antiparallel to one another, connected laterally by hydrogen bonds to form a pleated sheet.

Coarse-grained

In modelling complex systems or in renormalization, coarse-graining refers to the procedure in which two or more microscopic entities are replaced with a single entity to reduce the complexity or resolution of the model.

Critical nuclei

The smallest growth-competent unit of the new phase in a nucleation process.

Elongation

The addition of individual monomers to the ends of existing aggregates.

Fragmentation

The breaking of fibrils at any location along their length, which gives rise to new fibrils in a way that depends solely on the existing aggregate concentration.

Global fits

A fitting process in which kinetic aggregation curves at various initial monomer concentrations are fitted simultaneously to an integrated rate law using a single choice of rate parameters. This is to be distinguished from individual fits, in which each kinetic curve is fitted individually using different choices of rate parameters.

Half-time

The time required for half of the initial monomer concentration to convert into fibrils.

Hydrophobic effect

The thermodynamic tendency to reduce the surface area of nonpolar molecules exposed to an aqueous solvent gives rise to hydrophobic forces.

Lag phase

A period of time with a negligible macroscopic aggregate signal at the beginning of an aggregation experiment.

Microphase separation

The spontaneous formation of microscopic phase-separated domains from block copolymers with chemically incompatible components.

Monomers

A basic assembly unit. Monomer building blocks can also be protein complexes (for example, dimers and trimers) rather than just individual proteins.

Monomer dissociation

The removal of monomers from the ends of fibrils.

Nonspecific interaction

In molecular simulations, the interaction energy between two particles can depend on the particle type being modelled, for instance, electrostatic or hydrophobic interactions. Nonspecific interactions do not depend on the particle type and act as a generic attraction force between all particles.

Nucleation

The first stage in the formation of a new phase of matter, which requires the formation of a small nucleus of the new structure before the new structure can grow.

Oligomer

Microscopic clusters of proteins, each consisting of only a few monomer units. Unlike amyloid states, these are dynamic structures, which can readily dissociate back into the monomer state or convert into a fibrillar state through a structural change.

Phase separation

The formation of a highly concentrated droplet phase that stably coexists within the surrounding more dilute phase.

Polymorphism

The ability of closely related protein sequences to form distinctly different structures.

Reactive flux

In a chemical reaction network, the temporal evolution of the population of a molecular species is controlled by processes that either produce the species or consume it. The number of molecules produced or consumed by each process per unit time is the flux into or out of that molecular state.

Seeds

Pre-formed fibrils that are used to start an aggregation reaction.

Spinodal decomposition

The spinodal region corresponds to points on the free energy landscape where arbitrarily small fluctuations in the density of a solute lead to a decrease in total free energy, and thus small fluctuations grow quickly over time and forming new phases as a result.

Surface-catalysed secondary nucleation

A nucleation process in which the surface of existing fibrils acts as a template to catalyse the nucleation of new aggregates.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michaels, T.C.T., Qian, D., Šarić, A. et al. Amyloid formation as a protein phase transition. Nat Rev Phys 5, 379–397 (2023). https://doi.org/10.1038/s42254-023-00598-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00598-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing