Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and chromosomal DNA binding of the SWIRM domain

Abstract

The evolutionarily conserved Swi3p, Rsc8p and Moira (SWIRM) domain is found in many chromosomal proteins involved in chromatin modifications or remodeling. Here we report the three-dimensional solution structure of the SWIRM domain from the human transcriptional adaptor ADA2α. The structure reveals a five-helix bundle consisting of two helix-turn-helix motifs connected by a central long helix, reminiscent of the histone fold. Using structural and biochemical analyses, we showed that the SWIRM domains of human ADA2α and SMARC2 bind to double-stranded and nucleosomal DNA, and we identified amino acid residues required for this function. We demonstrated that the ADA2α SWIRM domain is colocalized with lysine-acetylated histone H3 in the cell nucleus and that it potentiates the ACF remodeling activity by enhancing accessibility of nucleosomal linker DNA bound to histone H1. These data suggest a functional role of the SWIRM domain in chromatin remodeling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-dimensional structure of the SWIRM domain of human ADA2α.
Figure 2: The SWIRM domain binding to DNA and the dinucleosome.
Figure 3: Molecular determinants of SWIRM domain binding to dinucleosomes.
Figure 4: The role of the SWIRM domain in ADA2α association with chromatin in vivo.
Figure 5

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Workman, J.L. & Kingston, R.E. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67, 545–579 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Carrozza, M.J., Utley, R.T., Workman, J.L. & Cote, J. The diverse functions of histone acetyltransferase complexes. Trends Genet. 19, 321–329 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Strahl, B.D. & Allis, C.D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Turner, B.M. Cellular memory and the histone code. Cell 111, 285–291 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Zeng, L. & Zhou, M.M. Bromodomain: an acetyl-lysine binding domain. FEBS Lett. 513, 124–128 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Fischle, W. et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev. 17, 1870–1881 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aasland, R., Stewart, A.F. & Gibson, T. The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends Biochem. Sci. 21, 87–88 (1996).

    CAS  PubMed  Google Scholar 

  9. Boyer, L.A., Latek, R.R. & Peterson, C.L. The SANT domain: a unique histone-tail-binding module? Nat. Rev. Mol. Cell Biol. 5, 158–163 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Stec, I., Nagl, S.B., van Ommen, G.J. & den Dunnen, J.T. The PWWP domain: a potential protein-protein interaction domain in nuclear proteins influencing differentiation? FEBS Lett. 473, 1–5 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Qiu, C., Sawada, K., Zhang, X. & Cheng, X. The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds. Nat. Struct. Biol. 9, 217–224 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ge, Y.Z. et al. Chromatin targeting of de novo DNA methyltransferases by the PWWP domain. J. Biol. Chem. 279, 25447–25454 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Aravind, L. & Iyer, L.M. The SWIRM domain: a conserved module found in chromosomal proteins points to novel chromatin-modifying activities. Genome Biol. 3, Research 0039 (2002).

    Article  Google Scholar 

  14. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Ring, H.Z., Vameghi-Meyers, V., Wang, W., Crabtree, G.R. & Francke, U. Five SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin (SMARC) genes are dispersed in the human genome. Genomics 51, 140–143 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Barlev, N.A. et al. A novel human Ada2 homologue functions with Gcn5 or Brg1 to coactivate transcription. Mol. Cell. Biol. 23, 6944–6957 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kusch, T., Guelman, S., Abmayr, S.M. & Workman, J.L. Two Drosophila Ada2 homologues function in different multiprotein complexes. Mol. Cell. Biol. 23, 3305–3319 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pankotai, T. et al. The homologous Drosophila transcriptional adaptors ADA2a and ADA2b are both required for normal development but have different functions. Mol. Cell. Biol. 25, 8215–8227 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436–439 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Lee, M.G., Wynder, C., Cooch, N. & Shiekhattar, R. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437, 432–435 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Clore, G.M. & Gronenborn, A.M. Multidimensional heteronuclear nuclear magnetic resonance of proteins. Methods Enzymol. 239, 349–363 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Kodandapani, R. et al. A new pattern for helix-turn-helix recognition revealed by the PU.1 ETS-domain-DNA complex. Nature 380, 456–460 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Zheng, N., Fraenkel, E., Pabo, C.O. & Pavletich, N.P. Structural basis of DNA recognition by the heterodimeric cell cycle transcription factor E2F-DP. Genes Dev. 13, 666–674 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ramakrishnan, V., Finch, J.T., Graziano, V., Lee, P.L. & Sweet, R.M. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 362, 219–223 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Candau, R. et al. Identification of human proteins functionally conserved with the yeast putative adaptors ADA2 and GCN5. Mol. Cell. Biol. 16, 593–602 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baxevanis, A.D., Arents, G., Moudrianakis, E.N. & Landsman, D. A variety of DNA-binding and multimeric proteins contain the histone fold motif. Nucleic Acids Res. 23, 2685–2691 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sanchez, R. & Sali, A. Comparative protein structure modeling. Introduction and practical examples with modeller. Methods Mol. Biol. 143, 97–129 (2000).

    CAS  PubMed  Google Scholar 

  28. Hill, D.A. & Imbalzano, A.N. Human SWI/SNF nucleosome remodeling activity is partially inhibited by linker histone H1. Biochemistry 39, 11649–11656 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Grant, P.A., Sterner, D.E., Duggan, L.J., Workman, J.L. & Berger, S.L. The SAGA unfolds: convergence of transcription regulators in chromatin-modifying complexes. Trends Cell Biol. 8, 193–197 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Ogata, K. et al. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell 79, 639–648 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, L., Liu, L. & Berger, S.L. Critical residues for histone acetylation by Gcn5, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo. Genes Dev. 12, 640–653 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ito, T., Bulger, M., Pazin, M.J., Kobayashi, R. & Kadonaga, J.T. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90, 145–155 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Fyodorov, D.V., Blower, M.D., Karpen, G.H. & Kadonaga, J.T. Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev. 18, 170–183 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamazaki, T., Lee, W., Arrowsmith, C.H., Mahandiram, D.R. & Kay, L.E. A suite of triple resonance NMR experiments for the backbone assignment of 15N, 13C, 2H labeled proteins with high sensitivity. J. Am. Chem. Soc. 116, 11655–11666 (1994).

    Article  CAS  Google Scholar 

  35. Sattler, M., Schleucher, J. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc. 34, 93–158 (1999).

    Article  CAS  Google Scholar 

  36. Farrow, N.A. et al. Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33, 5984–6003 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Brunger, A.T. X-PLOR Version 3.1: A System for X-Ray Crystallography and NMR (Yale University Press, New Haven, Connecticut, USA, 1993).

    Google Scholar 

  38. Nilges, M. & O'Donoghue, S. Ambiguous NOEs and automated NOE assignment. Prog. Nucl. Magn. Reson. Spectrosc. 32, 107–139 (1998).

    Article  CAS  Google Scholar 

  39. Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Hnilica, L.S. Methods for analysis of histones. Methods Enzymol. 40, 102–138 (1975).

    Article  CAS  PubMed  Google Scholar 

  41. Noll, H. & Noll, M. Sucrose gradient techniques and applications to nucleosome structure. Methods Enzymol. 170, 55–116 (1989).

    Article  CAS  PubMed  Google Scholar 

  42. Hamiche, A., Schultz, P., Ramakrishnan, V., Oudet, P. & Prunell, A. Linker histone-dependent DNA structure in linear mononucleosomes. J. Mol. Biol. 257, 30–42 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Luger, K., Rechsteiner, T.J. & Richmond, T.J. Preparation of nucleosome core particle from recombinant histones. Methods Enzymol. 304, 3–19 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Li, S. et al. Transcriptional repression of the cystic fibrosis transmembrane conductance regulator gene, mediated by CCAAT displacement protein/cut homolog, is associated with histone deacetylation. J. Biol. Chem. 274, 7803–7815 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Fyodorov, D.V. & Kadonaga, J.T. Chromatin assembly in vitro with purified recombinant ACF and NAP-1. Methods Enzymol. 371, 499–515 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Ura, K. et al. ATP-dependent chromatin remodeling facilitates nucleotide excision repair of UV-induced DNA lesions in synthetic dinucleosomes. EMBO J. 20, 2004–2014 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Polach, K.J. & Widom, J. Restriction enzymes as probes of nucleosome stability and dynamics. Methods Enzymol. 304, 278–298 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Li, D. et al. Kruppel-like factor-6 promotes preadipocyte differentiation through histone deacetylase 3-dependent repression of DLK1. J. Biol. Chem. 280, 26941–26952 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Nishio, H. & Walsh, M.J. CCAAT displacement protein/cut homolog recruits G9a histone lysine methyltransferase to repress transcription. Proc. Natl. Acad. Sci. USA 101, 11257–11262 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge M. Bauck for critical reading of the manuscript, S. Mujtaba for technical help and S. Hearn at Cold Spring Harbor Laboratory Microscopy Facility for technical assistance in performing the confocal laser scanning microscopy. This work was supported by grants from the US National Institutes of Health to M.-M.Z. and M.J.W.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin J Walsh or Ming-Ming Zhou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Structure-based sequence alignment of SWIRM domains. (PDF 385 kb)

Supplementary Fig. 2

Three-dimensional NMR structure of the human ADA2α SWIRM domain. (PDF 50 kb)

Supplementary Fig. 3

Assessment of the R428A mutation effect on the ADA2 SWIRM domain structure. (PDF 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, C., Zhang, Q., Li, S. et al. Structure and chromosomal DNA binding of the SWIRM domain. Nat Struct Mol Biol 12, 1078–1085 (2005). https://doi.org/10.1038/nsmb1022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1022

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing