Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Toward high-resolution computational design of the structure and function of helical membrane proteins

This Perspective provides an overview of the major advances in recent years in the computational design and structure prediction of α-helical membrane proteins.

Abstract

The computational design of α-helical membrane proteins is still in its infancy but has already made great progress. De novo design allows stable, specific and active minimal oligomeric systems to be obtained. Computational reengineering can improve the stability and function of naturally occurring membrane proteins. Currently, the major hurdle for the field is the experimental characterization of the designs. The emergence of new structural methods for membrane proteins will accelerate progress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Minimalistic active membrane designs.
Figure 2: Sequence and 3D contact motifs are strong predictors of local conformational stability.
Figure 3: Conformational membrane-protein thermostabilization by computational design.

Similar content being viewed by others

References

  1. Li, Z., Yang, Y., Zhan, J., Dai, L. & Zhou, Y. Energy functions in de novo protein design: current challenges and future prospects. Annu. Rev. Biophys. 42, 315–335 (2013).

    Article  CAS  Google Scholar 

  2. Pantazes, R.J., Grisewood, M.J. & Maranas, C.D. Recent advances in computational protein design. Curr. Opin. Struct. Biol. 21, 467–472 (2011).

    Article  CAS  Google Scholar 

  3. Richardson, J.S. & Richardson, D.C. The de novo design of protein structures. Trends Biochem. Sci. 14, 304–309 (1989).

    Article  CAS  Google Scholar 

  4. Ambroggio, X.I. & Kuhlman, B. Computational design of a single amino acid sequence that can switch between two distinct protein folds. J. Am. Chem. Soc. 128, 1154–1161 (2006).

    Article  CAS  Google Scholar 

  5. Kuhlman, B. et al. Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368 (2003).

    Article  CAS  Google Scholar 

  6. Jiang, L. et al. De novo computational design of retro-aldol enzymes. Science 319, 1387–1391 (2008).

    Article  CAS  Google Scholar 

  7. Röthlisberger, D. et al. Kemp elimination catalysts by computational enzyme design. Nature 453, 190–195 (2008).

    Article  Google Scholar 

  8. Siegel, J.B. et al. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329, 309–313 (2010).

    Article  CAS  Google Scholar 

  9. Khare, S.D. et al. Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis. Nat. Chem. Biol. 8, 294–300 (2012).

    Article  CAS  Google Scholar 

  10. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E.L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    Article  CAS  Google Scholar 

  11. Almén, M.S., Nordström, K.J.V., Fredriksson, R. & Schiöth, H.B. Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol. 7, 50 (2009).

    Article  Google Scholar 

  12. Liu, J. & Rost, B. Comparing function and structure between entire proteomes. Protein Sci. 10, 1970–1979 (2001).

    Article  CAS  Google Scholar 

  13. Korendovych, I.V. et al. De novo design and molecular assembly of a transmembrane diporphyrin-binding protein complex. J. Am. Chem. Soc. 132, 15516–15518 (2010).

    Article  CAS  Google Scholar 

  14. Joh, N.H. et al. De novo design of a transmembrane Zn2+-transporting four-helix bundle. Science 346, 1520–1524 (2014).

    Article  CAS  Google Scholar 

  15. Forrest, L.R. Structural symmetry in membrane proteins. Annu. Rev. Biophys. 44, 311–337 (2015).

    Article  CAS  Google Scholar 

  16. Grigoryan, G. Absolute free energies of biomolecules from unperturbed ensembles. J. Comput. Chem. 34, 2726–2741 (2013).

    Article  CAS  Google Scholar 

  17. Hallen, M.A., Keedy, D.A. & Donald, B.R. Dead-end elimination with perturbations (DEEPer): a provable protein design algorithm with continuous sidechain and backbone flexibility. Proteins 81, 18–39 (2013).

    Article  CAS  Google Scholar 

  18. Morrison, E.A. et al. Antiparallel EmrE exports drugs by exchanging between asymmetric structures. Nature 481, 45–50 (2012).

    Article  CAS  Google Scholar 

  19. Senes, A., Gerstein, M. & Engelman, D.M. Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. J. Mol. Biol. 296, 921–936 (2000).

    Article  CAS  Google Scholar 

  20. Russ, W.P. & Engelman, D.M. The GxxxG motif: a framework for transmembrane helix-helix association. J. Mol. Biol. 296, 911–919 (2000).

    Article  CAS  Google Scholar 

  21. Walters, R.F.S. & DeGrado, W.F. Helix-packing motifs in membrane proteins. Proc. Natl. Acad. Sci. USA 103, 13658–13663 (2006).

    Article  CAS  Google Scholar 

  22. Zhang, S.-Q. et al. The membrane- and soluble-protein helix-helix interactome: similar geometry via different interactions. Structure 23, 527–541 (2015).

    Article  Google Scholar 

  23. Senes, A., Engel, D.E. & DeGrado, W.F. Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Curr. Opin. Struct. Biol. 14, 465–479 (2004).

    Article  CAS  Google Scholar 

  24. Senes, A., Ubarretxena-Belandia, I. & Engelman, D.M. The Cα—HO hydrogen bond: a determinant of stability and specificity in transmembrane helix interactions. Proc. Natl. Acad. Sci. USA 98, 9056–9061 (2001).

    Article  CAS  Google Scholar 

  25. Feng, X. & Barth, P. A topological and conformational stability alphabet for multipass membrane proteins. Nat. Chem. Biol. 12, 167–173 (2016).

    Article  CAS  Google Scholar 

  26. Yin, H. et al. Computational design of peptides that target transmembrane helices. Science 315, 1817–1822 (2007).

    Article  CAS  Google Scholar 

  27. Mueller, B.K., Subramaniam, S. & Senes, A. A frequent, GxxxG-mediated, transmembrane association motif is optimized for the formation of interhelical Cα-H hydrogen bonds. Proc. Natl. Acad. Sci. USA 111, E888–E895 (2014).

    Article  CAS  Google Scholar 

  28. Mori, T., Miyashita, N., Im, W., Feig, M. & Sugita, Y. Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms. Biochim. Biophys. Acta http://dx.doi.org/10.1016/j.bbamem.2015.12.032 (2016).

  29. Cheng, Y., Grigorieff, N., Penczek, P.A. & Walz, T. A primer to single-particle cryo-electron microscopy. Cell 161, 438–449 (2015).

    Article  CAS  Google Scholar 

  30. Bai, X.C., McMullan, G. & Scheres, S.H.W. How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci. 40, 49–57 (2015).

    Article  CAS  Google Scholar 

  31. Poulos, S., Morgan, J.L.W., Zimmer, J. & Faham, S. Bicelles coming of age: an empirical approach to bicelle crystallization. Methods Enzymol. 557, 393–416 (2015).

    Article  CAS  Google Scholar 

  32. Williamson, J.A. et al. Structure and multistate function of the transmembrane electron transporter CcdA. Nat. Struct. Mol. Biol. 22, 809–814 (2015).

    Article  CAS  Google Scholar 

  33. Wang, S. et al. Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat. Methods 10, 1007–1012 (2013).

    Article  Google Scholar 

  34. Isogai, S. et al. Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor. Nature 530, 237–241 (2016).

    Article  CAS  Google Scholar 

  35. Manglik, A. et al. Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161, 1101–1111 (2015).

    Article  CAS  Google Scholar 

  36. Liu, J.J., Horst, R., Katritch, V., Stevens, R.C. & Wüthrich, K. Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 335, 1106–1110 (2012).

    Article  CAS  Google Scholar 

  37. Zhou, Y. & Bowie, J.U. Building a thermostable membrane protein. J. Biol. Chem. 275, 6975–6979 (2000).

    Article  CAS  Google Scholar 

  38. Katritch, V., Cherezov, V. & Stevens, R.C. Structure-function of the G protein-coupled receptor superfamily. Annu. Rev. Pharmacol. Toxicol. 53, 531–556 (2013).

    Article  CAS  Google Scholar 

  39. Magnani, F., Shibata, Y., Serrano-Vega, M.J. & Tate, C.G. Co-evolving stability and conformational homogeneity of the human adenosine A2a receptor. Proc. Natl. Acad. Sci. USA 105, 10744–10749 (2008).

    Article  CAS  Google Scholar 

  40. Sarkar, C.A. et al. Directed evolution of a G protein-coupled receptor for expression, stability, and binding selectivity. Proc. Natl. Acad. Sci. USA 105, 14808–14813 (2008).

    Article  CAS  Google Scholar 

  41. Chun, E. et al. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20, 967–976 (2012).

    Article  CAS  Google Scholar 

  42. Egloff, P. et al. Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli . Proc. Natl. Acad. Sci. USA 111, E655–E662 (2014).

    Article  CAS  Google Scholar 

  43. Chen, K.-Y.M., Zhou, F., Fryszczyn, B.G. & Barth, P. Naturally evolved G protein-coupled receptors adopt metastable conformations. Proc. Natl. Acad. Sci. USA 109, 13284–13289 (2012).

    Article  CAS  Google Scholar 

  44. Vaidehi, N., Grisshammer, R. & Tate, C.G. How can mutations thermostabilize G-protein-coupled receptors? Trends Pharmacol. Sci. 37, 37–46 (2016).

    Article  CAS  Google Scholar 

  45. Conklin, B.R. et al. Engineering GPCR signaling pathways with RASSLs. Nat. Methods 5, 673–678 (2008).

    Article  CAS  Google Scholar 

  46. Roth, B.L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).

    Article  CAS  Google Scholar 

  47. Knight, Z.A. & Shokat, K.M. Features of selective kinase inhibitors. Chem. Biol. 12, 621–637 (2005).

    Article  CAS  Google Scholar 

  48. Tinberg, C.E. et al. Computational design of ligand-binding proteins with high affinity and selectivity. Nature 501, 212–216 (2013).

    Article  CAS  Google Scholar 

  49. Bhattacharya, S. & Vaidehi, N. Differences in allosteric communication pipelines in the inactive and active states of a GPCR. Biophys. J. 107, 422–434 (2014).

    Article  CAS  Google Scholar 

  50. Miao, Y., Nichols, S.E., Gasper, P.M., Metzger, V.T. & McCammon, J.A. Activation and dynamic network of the M2 muscarinic receptor. Proc. Natl. Acad. Sci. USA 110, 10982–10987 (2013).

    Article  CAS  Google Scholar 

  51. LeVine, M.V. & Weinstein, H. NbIT: a new information theory-based analysis of allosteric mechanisms reveals residues that underlie function in the leucine transporter LeuT. PLoS Comput. Biol. 10, e1003603 (2014).

    Article  Google Scholar 

  52. Yarov-Yarovoy, V., Schonbrun, J. & Baker, D. Multipass membrane protein structure prediction using Rosetta. Proteins 62, 1010–1025 (2006).

    Article  CAS  Google Scholar 

  53. Barth, P., Schonbrun, J. & Baker, D. Toward high-resolution prediction and design of transmembrane helical protein structures. Proc. Natl. Acad. Sci. USA 104, 15682–15687 (2007).

    Article  CAS  Google Scholar 

  54. Barth, P., Wallner, B. & Baker, D. Prediction of membrane protein structures with complex topologies using limited constraints. Proc. Natl. Acad. Sci. USA 106, 1409–1414 (2009).

    Article  CAS  Google Scholar 

  55. Hopf, T.A. et al. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607–1621 (2012).

    Article  CAS  Google Scholar 

  56. Ovchinnikov, S. et al. Large-scale determination of previously unsolved protein structures using evolutionary information. eLife 4, e09248 (2015).

    Article  Google Scholar 

  57. Wang, Y. & Barth, P. Evolutionary-guided de novo structure prediction of self-associated transmembrane helical proteins with near-atomic accuracy. Nat. Commun. 6, 7196 (2015).

    Article  CAS  Google Scholar 

  58. Chen, K.-Y.M., Sun, J., Salvo, J.S., Baker, D. & Barth, P. High-resolution modeling of transmembrane helical protein structures from distant homologues. PLoS Comput. Biol. 10, e1003636 (2014).

    Article  Google Scholar 

  59. Eswar, N., Eramian, D., Webb, B., Shen, M.-Y. & Sali, A. Protein structure modeling with MODELLER. Methods Mol. Biol. 426, 145–159 (2008).

    Article  CAS  Google Scholar 

  60. Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738 (2010).

    Article  CAS  Google Scholar 

  61. Kelm, S., Shi, J. & Deane, C.M. MEDELLER: homology-based coordinate generation for membrane proteins. Bioinformatics 26, 2833–2840 (2010).

    Article  CAS  Google Scholar 

  62. Zhang, J., Yang, J., Jang, R. & Zhang, Y. GPCR-I-TASSER: a hybrid approach to G protein-coupled receptor structure modeling and the application to the human genome. Structure 23, 1538–1549 (2015).

    Article  CAS  Google Scholar 

  63. Bhattacharya, S. et al. Critical analysis of the successes and failures of homology models of G protein-coupled receptors. Proteins 81, 729–739 (2013).

    Article  CAS  Google Scholar 

  64. Mandell, D.J., Coutsias, E.A. & Kortemme, T. Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat. Methods 6, 551–552 (2009).

    Article  CAS  Google Scholar 

  65. Tang, K., Zhang, J. & Liang, J. Fast protein loop sampling and structure prediction using distance-guided sequential chain-growth Monte Carlo method. PLoS Comput. Biol. 10, e1003539 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

P.B. is supported by National Institutes of Health grant R01GM097207, by a Lilly Research Award Program and by a supercomputer allocation from XSEDE (MCB120101). A.S. is supported by National Institutes of Health grant R01GM0997522 and National Science Foundation grant CHE-1415910. We are grateful to S. Condon, S. Anderson, X. Feng and H. Cao for critical reading of the manuscript and to G. Grigoryan for providing the model of Rocker.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patrick Barth or Alessandro Senes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barth, P., Senes, A. Toward high-resolution computational design of the structure and function of helical membrane proteins. Nat Struct Mol Biol 23, 475–480 (2016). https://doi.org/10.1038/nsmb.3231

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3231

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing