Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamics of translation by single ribosomes through mRNA secondary structures

Abstract

During protein synthesis, the ribosome translates nucleotide triplets in single-stranded mRNA into polypeptide sequences. Strong downstream mRNA secondary structures, which must be unfolded for translation, can slow or even halt protein synthesis. Here we used single-molecule fluorescence resonance energy transfer to determine reaction rates for specific steps within the elongation cycle as the Escherichia coli ribosome encounters stem-loop or pseudoknot mRNA secondary structures. Downstream stem-loops containing 100% GC base pairs decrease the rates of both tRNA translocation within the ribosome and deacylated tRNA dissociation from the ribosomal exit site (E site). Downstream stem-loops or pseudoknots containing both GC and AU pairs also decrease the rate of tRNA dissociation, but they have little effect on tRNA translocation rate. Thus, somewhat unexpectedly, unfolding of mRNA secondary structures is more closely coupled to E-site tRNA dissociation than to tRNA translocation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: mRNAs used in this study and their secondary structures.
Figure 2: Schematics of FRET studies on complexes formed through two elongation cycles that add arginine and phenylalanine to the nascent peptide at positions 8 and 9, respectively.
Figure 3: tRNA-tRNA smFRET.
Figure 4: L11-tRNA smFRET.
Figure 5: L1-tRNA smFRET.

Similar content being viewed by others

References

  1. Zhang, G., Hubalewska, M. & Ignatova, Z. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat. Struct. Mol. Biol. 16, 274–280 (2009).

    Article  CAS  Google Scholar 

  2. Guisez, Y., Robbens, J., Remaut, E. & Fiers, W. Folding of the Ms2 coat protein in Escherichia coli is modulated by translational pauses resulting from messenger-RNA secondary structure and codon usage: a hypothesis. J. Theor. Biol. 162, 243–252 (1993).

    Article  CAS  Google Scholar 

  3. Varenne, S., Buc, J., Lloubes, R. & Lazdunski, C. Translation is a non-uniform process: effect of transfer-RNA availability on the rate of elongation of nascent polypeptide-chains. J. Mol. Biol. 180, 549–576 (1984).

    Article  CAS  Google Scholar 

  4. Kimchi-Sarfaty, C. et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315, 525–528 (2007).

    Article  CAS  Google Scholar 

  5. Namy, O., Moran, S.J., Stuart, D.I., Gilbert, R.J.C. & Brierley, I. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature 441, 244–247 (2006).

    Article  CAS  Google Scholar 

  6. Giedroc, D.P. & Cornish, P.V. Frameshifting RNA pseudoknots: structure and mechanism. Virus Res. 139, 193–208 (2009).

    Article  CAS  Google Scholar 

  7. Gurvich, O.L. et al. Sequences that direct significant levels of frameshifting are frequent in coding regions of Escherichia coli. EMBO J. 22, 5941–5950 (2003).

    Article  CAS  Google Scholar 

  8. Brierley, I., Meredith, M.R., Bloys, A.J. & Hagervall, T.G. Expression of a coronavirus ribosomal frameshift signal in Escherichia coli: influence of tRNA anticodon modification on frameshifting. J. Mol. Biol. 270, 360–373 (1997).

    Article  CAS  Google Scholar 

  9. Brierley, I. & Dos Ramos, F.J. Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV. Virus Res. 119, 29–42 (2006).

    Article  CAS  Google Scholar 

  10. Yusupova, G.Z., Yusupov, M.M., Cate, J.H.D. & Noller, H.F. The path of messenger RNA through the ribosome. Cell 106, 233–241 (2001).

    Article  CAS  Google Scholar 

  11. Takyar, S., Hickerson, R.P. & Noller, H.F. mRNA helicase activity of the ribosome. Cell 120, 49–58 (2005).

    Article  CAS  Google Scholar 

  12. Spahn, C.M.T. et al. Structure of the 80S ribosome from Saccharomyces cerevisiae tRNA-ribosome and subunit-subunit interactions. Cell 107, 373–386 (2001).

    Article  CAS  Google Scholar 

  13. Barbara, P.F. Single-molecule spectroscopy. Acc. Chem. Res. 38, 503 (2005).

    Article  CAS  Google Scholar 

  14. Qu, X. et al. The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 475, 118–121 (2011).

    Article  CAS  Google Scholar 

  15. Wen, J.D. et al. Following translation by single ribosomes one codon at a time. Nature 452, 598–603 (2008).

    Article  CAS  Google Scholar 

  16. Brierley, I., Rolley, N.J., Jenner, A.J. & Inglis, S.C. Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal. J. Mol. Biol. 220, 889–902 (1991).

    Article  CAS  Google Scholar 

  17. Somogyi, P., Jenner, A.J., Brierley, I. & Inglis, S.C. Ribosomal pausing during translation of an RNA pseudoknot. Mol. Cell Biol. 13, 6931–6940 (1993).

    Article  CAS  Google Scholar 

  18. Chen, C. et al. Single-molecule fluorescence measurements of ribosomal translocation dynamics. Mol. Cell 42, 367–377 (2011).

    Article  CAS  Google Scholar 

  19. Chen, C. et al. Allosteric vs. spontaneous exit-site (E-site) tRNA dissociation early in protein synthesis. Proc. Natl. Acad. Sci. USA 108, 16980–16985 (2011).

    Article  CAS  Google Scholar 

  20. Stevens, B. et al. FRET-based identification of mRNAs undergoing translation. PLoS ONE 7, e38344 (2012).

    Article  CAS  Google Scholar 

  21. Agirrezabala, X. et al. Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome. Mol. Cell 32, 190–197 (2008).

    Article  CAS  Google Scholar 

  22. Julian, P. et al. Structure of ratcheted ribosomes with tRNAs in hybrid states. Proc. Natl. Acad. Sci. USA 105, 16924–16927 (2008).

    Article  CAS  Google Scholar 

  23. Frank, J. & Gonzalez, R.L. Structure and dynamics of a processive Brownian motor: The translating ribosome. Annu. Rev. Biochem. 79, 381–412 (2010).

    Article  CAS  Google Scholar 

  24. Munro, J.B., Sanbonmatsu, K.Y., Spahn, C.M.T. & Blanchard, S.C. Navigating the ribosome's metastable energy landscape. Trends Biochem. Sci. 34, 390–400 (2009).

    Article  CAS  Google Scholar 

  25. Fei, J., Kosuri, P., MacDougall, D.D. & Gonzalez, R.L. Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation. Mol. Cell 30, 348–359 (2008).

    Article  CAS  Google Scholar 

  26. Munro, J.B. et al. Spontaneous formation of the unlocked state of the ribosome is a multistep process. Proc. Natl. Acad. Sci. USA 107, 709–714 (2010).

    Article  CAS  Google Scholar 

  27. Cornish, P.V. et al. Following movement of the L1 stalk between three functional states in single ribosomes. Proc. Natl. Acad. Sci. USA 106, 2571–2576 (2009).

    Article  CAS  Google Scholar 

  28. Giedroc, D.P., Theimer, C.A. & Nixon, P.L. Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting. J. Mol. Biol. 298, 167–185 (2000).

    Article  CAS  Google Scholar 

  29. Rinnenthal, J., Klinkert, B., Narberhaus, F. & Schwalbe, H. Direct observation of the temperature-induced melting process of the Salmonella fourU RNA thermometer at base-pair resolution. Nucleic Acids Res. 38, 3834–3847 (2010).

    Article  CAS  Google Scholar 

  30. Pan, D., Kirillov, S.V. & Cooperman, B.S. Kinetically competent intermediates in the translocation step of protein synthesis. Mol. Cell 25, 519–529 (2007).

    Article  CAS  Google Scholar 

  31. Kaur, J., Raj, M. & Cooperman, B.S. Fluorescent labeling of tRNA dihydrouridine residues: mechanism and distribution. RNA 17, 1393–1400 (2011).

    Article  CAS  Google Scholar 

  32. Liu, H., Pan, D.L., Pech, M. & Cooperman, B.S. Interrupted catalysis: the EF4 (LepA) effect on back-translocation. J. Mol. Biol. 396, 1043–1052 (2010).

    Article  CAS  Google Scholar 

  33. Savelsbergh, A. et al. An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocation. Mol. Cell 11, 1517–1523 (2003).

    Article  CAS  Google Scholar 

  34. Ramrath, D.J.F. et al. The complex of tmRNA-SmpB and EF-G on translocating ribosomes. Nature 485, 526–529 (2012).

    Article  CAS  Google Scholar 

  35. Ratje, A.H. et al. Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. Nature 468, 713–716 (2010).

    Article  CAS  Google Scholar 

  36. Ermolenko, D.N. & Noller, H.F. mRNA translocation occurs during the second step of ribosomal intersubunit rotation. Nat. Struct. Mol. Biol. 18, 457–462 (2011).

    Article  CAS  Google Scholar 

  37. Rodnina, M.V. & Wintermeyer, W. GTP consumption of elongation factor Tu during translation of heteropolymeric messenger RNAs. Proc. Natl. Acad. Sci. USA 92, 1945–1949 (1995).

    Article  CAS  Google Scholar 

  38. Subramanian, A.R. & Dabbs, E.R. Functional studies on ribosomes lacking protein L1 from mutant Escherichia coli. Eur. J. Biochem. 112, 425–430 (1980).

    Article  CAS  Google Scholar 

  39. Pan, D.L., Qin, H.O. & Cooperman, B.S. Synthesis and functional activity of tRNAs labeled with fluorescent hydrazides in the D-loop. RNA 15, 346–354 (2009).

    Article  CAS  Google Scholar 

  40. Chiu, J., March, P.E., Lee, R. & Tillett, D. Site-directed, ligase-independent mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4 h. Nucleic Acids Res. 32, e174 (2004).

    Article  Google Scholar 

  41. Odom, O.W. et al. Distances between 3′ ends of ribosomal ribonucleic acids reassembled into Escherichia coli ribosomes. Biochemistry 19, 5947–5954 (1980).

    Article  CAS  Google Scholar 

  42. Kapanidis, A.N. et al. Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. Proc. Natl. Acad. Sci. USA 101, 8936–8941 (2004).

    Article  CAS  Google Scholar 

  43. McKinney, S.A., Joo, C. & Ha, T. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys. J. 91, 1941–1951 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grant R01GM080376 to B.S.C. and Y.E.G. and American Heart Association Postdoctoral Fellowship 12POST8910014 to C.C.

Author information

Authors and Affiliations

Authors

Contributions

C.C., B.S.C. and Y.E.G. designed the experiments. C.C., S.L.B. and M.R. conducted the experiments and analyzed the data. H.Z. and I.F. prepared reagents. C.C., B.S.C. and Y.E.G. wrote the paper.

Corresponding authors

Correspondence to Barry S Cooperman or Yale E Goldman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–4 (PDF 2507 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Zhang, H., Broitman, S. et al. Dynamics of translation by single ribosomes through mRNA secondary structures. Nat Struct Mol Biol 20, 582–588 (2013). https://doi.org/10.1038/nsmb.2544

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2544

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing