An asymmetric SMC–kleisin bridge in prokaryotic condensin

Abstract

Eukaryotic structural maintenance of chromosomes (SMC)–kleisin complexes form large, ring-shaped assemblies that promote accurate chromosome segregation. Their asymmetric structural core comprises SMC heterodimers that associate with both ends of a kleisin subunit. However, prokaryotic condensin Smc–ScpAB is composed of symmetric Smc homodimers associated with the kleisin ScpA in a postulated symmetrical manner. Here, we demonstrate that Smc molecules have two distinct binding sites for ScpA. The N terminus of ScpA binds the Smc coiled coil, whereas the C terminus binds the Smc ATPase domain. We show that in Bacillus subtilis cells, an Smc dimer is bridged by a single ScpAB to generate asymmetric tripartite rings analogous to eukaryotic SMC complexes. We define a molecular mechanism that ensures asymmetric assembly, and we conclude that the basic architecture of SMC–kleisin rings evolved before the emergence of eukaryotes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: ScpA's winged-helix domain associates with Smc.
Figure 2: Organization of ScpAB.
Figure 3: Structure of a second SMC–kleisin interface.
Figure 4: A single ScpAB bridge connects Smc heads.
Figure 5: Architecture of Smc–ScpAB complexes in vivo.
Figure 6: Mechanisms promoting assembly of Smc2–ScpA–ScpB2 rings.
Figure 7: Model for the functional unit of the Smc–ScpAB holocomplex in cells.

Accession codes

Primary accessions

Protein Data Bank

References

  1. 1

    Hirano, T. At the heart of the chromosome: SMC proteins in action. Nat. Rev. Mol. Cell Biol. 7, 311–322 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Nasmyth, K. & Haering, C.H. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43, 525–558 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Cuylen, S. & Haering, C.H. Deciphering condensin action during chromosome segregation. Trends Cell Biol. 21, 552–559 (2011).

    CAS  Article  Google Scholar 

  4. 4

    D'Ambrosio, C., Kelly, G., Shirahige, K. & Uhlmann, F. Condensin-dependent rDNA decatenation introduces a temporal pattern to chromosome segregation. Curr. Biol. 18, 1084–1089 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Fousteri, M.I. & Lehmann, A.R. A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair protein. EMBO J. 19, 1691–1702 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Kegel, A. et al. Chromosome length influences replication-induced topological stress. Nature 471, 392–396 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Mascarenhas, J., Soppa, J., Strunnikov, A.V. & Graumann, P.L. Cell cycle-dependent localization of two novel prokaryotic chromosome segregation and condensation proteins in Bacillus subtilis that interact with SMC protein. EMBO J. 21, 3108–3118 (2002).

    CAS  Article  Google Scholar 

  8. 8

    Soppa, J. et al. Discovery of two novel families of proteins that are proposed to interact with prokaryotic SMC proteins, and characterization of the Bacillus subtilis family members ScpA and ScpB. Mol. Microbiol. 45, 59–71 (2002).

    CAS  Article  Google Scholar 

  9. 9

    Britton, R.A., Lin, D.C. & Grossman, A.D. Characterization of a prokaryotic SMC protein involved in chromosome partitioning. Genes Dev. 12, 1254–1259 (1998).

    CAS  Article  Google Scholar 

  10. 10

    Hirano, M. & Hirano, T. Positive and negative regulation of SMC-DNA interactions by ATP and accessory proteins. EMBO J. 23, 2664–2673 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Niki, H., Jaffe, A., Imamura, R., Ogura, T. & Hiraga, S. The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E. coli. EMBO J. 10, 183–193 (1991).

    CAS  Article  Google Scholar 

  12. 12

    Yamazoe, M. et al. Complex formation of MukB, MukE and MukF proteins involved in chromosome partitioning in Escherichia coli. EMBO J. 18, 5873–5884 (1999).

    CAS  Article  Google Scholar 

  13. 13

    Gruber, S. & Errington, J. Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell 137, 685–696 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Minnen, A., Attaiech, L., Thon, M., Gruber, S. & Veening, J.W. SMC is recruited to oriC by ParB and promotes chromosome segregation in Streptococcus pneumoniae. Mol. Microbiol. 81, 676–688 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Sullivan, N.L., Marquis, K.A. & Rudner, D.Z. Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation. Cell 137, 697–707 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Danilova, O., Reyes-Lamothe, R., Pinskaya, M., Sherratt, D. & Possoz, C. MukB colocalizes with the oriC region and is required for organization of the two Escherichia coli chromosome arms into separate cell halves. Mol. Microbiol. 65, 1485–1492 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Griese, J.J., Witte, G. & Hopfner, K.P. Structure and DNA binding activity of the mouse condensin hinge domain highlight common and diverse features of SMC proteins. Nucleic Acids Res. 38, 3454–3465 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Haering, C.H., Lowe, J., Hochwagen, A. & Nasmyth, K. Molecular architecture of SMC proteins and the yeast cohesin complex. Mol. Cell 9, 773–788 (2002).

    CAS  Article  Google Scholar 

  19. 19

    Kurze, A. et al. A positively charged channel within the Smc1/Smc3 hinge required for sister chromatid cohesion. EMBO J. 30, 364–378 (2011).

    CAS  Article  Google Scholar 

  20. 20

    Haering, C.H. et al. Structure and stability of cohesin′s Smc1-kleisin interaction. Mol. Cell 15, 951–964 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Lammens, A., Schele, A. & Hopfner, K.P. Structural biochemistry of ATP-driven dimerization and DNA-stimulated activation of SMC ATPases. Curr. Biol. 14, 1778–1782 (2004).

    CAS  Article  Google Scholar 

  22. 22

    Arumugam, P. et al. ATP hydrolysis is required for cohesin's association with chromosomes. Curr. Biol. 13, 1941–1953 (2003).

    CAS  Article  Google Scholar 

  23. 23

    Weitzer, S., Lehane, C. & Uhlmann, F. A model for ATP hydrolysis-dependent binding of cohesin to DNA. Curr. Biol. 13, 1930–1940 (2003).

    CAS  Article  Google Scholar 

  24. 24

    Hu, B. et al. ATP hydrolysis is required for relocating cohesin from sites occupied by its Scc2/4 loading complex. Curr. Biol. 21, 12–24 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Schleiffer, A. et al. Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners. Mol. Cell 11, 571–575 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Gruber, S., Haering, C.H. & Nasmyth, K. Chromosomal cohesin forms a ring. Cell 112, 765–777 (2003).

    CAS  Article  Google Scholar 

  27. 27

    Haering, C.H., Farcas, A.M., Arumugam, P., Metson, J. & Nasmyth, K. The cohesin ring concatenates sister DNA molecules. Nature 454, 297–301 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Ivanov, D. & Nasmyth, K. A topological interaction between cohesin rings and a circular minichromosome. Cell 122, 849–860 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Woo, J.S. et al. Structural studies of a bacterial condensin complex reveal ATP-dependent disruption of intersubunit interactions. Cell 136, 85–96 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Fennell-Fezzie, R., Gradia, S.D., Akey, D. & Berger, J.M. The MukF subunit of Escherichia coli condensin: architecture and functional relationship to kleisins. EMBO J. 24, 1921–1930 (2005).

    CAS  Article  Google Scholar 

  31. 31

    Badrinarayanan, A., Reyes-Lamothe, R., Uphoff, S., Leake, M.C. & Sherratt, D.J. In vivo architecture and action of bacterial structural maintenance of chromosome proteins. Science 338, 528–531 (2012).

    CAS  Article  Google Scholar 

  32. 32

    Fuentes-Perez, M.E., Gwynn, E.J., Dillingham, M.S. & Moreno-Herrero, F. Using DNA as a fiducial marker to study SMC complex interactions with the atomic force microscope. Biophys. J. 102, 839–848 (2012).

    CAS  Article  Google Scholar 

  33. 33

    Volkov, A., Mascarenhas, J., Andrei-Selmer, C., Ulrich, H.D. & Graumann, P.L. A prokaryotic condensin/cohesin-like complex can actively compact chromosomes from a single position on the nucleoid and binds to DNA as a ring-like structure. Mol. Cell. Biol. 23, 5638–5650 (2003).

    CAS  Article  Google Scholar 

  34. 34

    Kim, J.S. et al. Crystal structure and domain characterization of ScpB from Mycobacterium tuberculosis. Proteins 71, 1553–1556 (2008).

    CAS  Article  Google Scholar 

  35. 35

    Hirano, M. & Hirano, T. Hinge-mediated dimerization of SMC protein is essential for its dynamic interaction with DNA. EMBO J. 21, 5733–5744 (2002).

    CAS  Article  Google Scholar 

  36. 36

    Mascarenhas, J. et al. Dynamic assembly, localization and proteolysis of the Bacillus subtilis SMC complex. BMC Cell Biol. 6, 28 (2005).

    Article  Google Scholar 

  37. 37

    Stephan, A.K., Kliszczak, M. & Morrison, C.G. The Nse2/Mms21 SUMO ligase of the Smc5/6 complex in the maintenance of genome stability. FEBS Lett. 585, 2907–2913 (2011).

    CAS  Article  Google Scholar 

  38. 38

    Unal, E. et al. A molecular determinant for the establishment of sister chromatid cohesion. Science 321, 566–569 (2008).

    Article  Google Scholar 

  39. 39

    Rolef Ben-Shahar, T. et al. Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321, 563–566 (2008).

    Article  Google Scholar 

  40. 40

    Gruber, S. MukBEF on the march: taking over chromosome organization in bacteria? Mol. Microbiol. 81, 855–859 (2011).

    CAS  Article  Google Scholar 

  41. 41

    Gruber, S. et al. Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge. Cell 127, 523–537 (2006).

    CAS  Article  Google Scholar 

  42. 42

    Chan, K.L. et al. Cohesin's DNA exit gate is distinct from its entrance gate and is regulated by acetylation. Cell 150, 961–974 (2012).

    CAS  Article  Google Scholar 

  43. 43

    Carter, S.D. & Sjogren, C. The SMC complexes, DNA and chromosome topology: right or knot? Crit. Rev. Biochem. Mol. Biol. 47, 1–16 (2012).

    CAS  Article  Google Scholar 

  44. 44

    Hamoen, L.W., Smits, W.K., de Jong, A., Holsappel, S. & Kuipers, O.P. Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Nucleic Acids Res. 30, 5517–5528 (2002).

    CAS  Article  Google Scholar 

  45. 45

    Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3, e3647 (2008).

    Article  Google Scholar 

  46. 46

    Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS  Article  Google Scholar 

  47. 47

    Scholefield, G., Errington, J. & Murray, H. Soj/ParA stalls DNA replication by inhibiting helix formation of the initiator protein DnaA. EMBO J. 31, 1542–1555 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank E. Conti and S. Jentsch for sharing resources and helpful advice and K. Nasmyth and W. Zachariae for critical reading of the manuscript. We are grateful to the MPI Crystallization Facility for HTP screening, to the MPI Core Facility and C. Eberl for help with MS analysis, to M. Blettinger, A.-L. Cost and P. Ringer for technical help and to H. Murray (Newcastle University, Newcastle upon Tyne, UK) for providing DnaA protein and antiserum. S. Uebel kindly performed and analyzed the analytical ultracentrifugation experiments. We thank A. Pauluhn, V. Olieric and the staff of the PX beamlines at the Swiss Light Source (SLS, Villigen, Zurich) for assistance during crystallographic data collection and E. Lorentzen and R. Prabu for helpful advice for twinning refinement. We also acknowledge the use of Beamline 5C at PAL and BL41XU at the SPring-8. This work was supported by funding from the Max Planck Society and a Starting Grant from the European Research Council ERC StG #260853 “DiseNtAngle” (S.G.) and by the National Research Foundation of Korea grant 2012-0005612 (B.-H.O.).

Author information

Affiliations

Authors

Contributions

F.B., B. subtilis strain constructions and cellular and biochemical experiments; H.-C.S., F.B., Y.-M.S. and V.G.-O., protein purification; H.-C.S. and Y.-M.S., structure determination and biochemical experiments; J.B. and Y.-G.K., X-ray data collection and structure determination; F.B., H.-C.S., S.G. and B.-H.O. conception of experiments and preparation of the manuscript.

Corresponding authors

Correspondence to Byung-Ha Oh or Stephan Gruber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–3 and Supplementary Note (PDF 4435 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bürmann, F., Shin, H., Basquin, J. et al. An asymmetric SMC–kleisin bridge in prokaryotic condensin. Nat Struct Mol Biol 20, 371–379 (2013). https://doi.org/10.1038/nsmb.2488

Download citation

Further reading