Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

New functions for DNA modifications by TET-JBP

TET and JBP proteins catalyze the oxidation of methylated C bases in the mammalian genome and of the methyl group of T bases in kinetoplastid genomes, respectively. A recent study in Nature Structural & Molecular Biology suggests a new function of 5-methylcytosine oxidation in regulating RNA polymerase II elongation rate that is reminiscent of that of base J in transcription termination in Leishmania.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: The experimental setup used by Kellinger et al.8
Figure 3: Possible functions of 5fC and 5caC in transcription regulation.

References

  1. Ooi, S.K., O'Donnell, A.H. & Bestor, T.H. J. Cell Sci. 122, 2787–2791 (2009).

    Article  CAS  Google Scholar 

  2. Tahiliani, M. et al. Science 324, 930–935 (2009).

    Article  CAS  Google Scholar 

  3. Ito, S. et al. Science 333, 1300–1303 (2011).

    Article  CAS  Google Scholar 

  4. He, Y.F. et al. Science 333, 1303–1307 (2011).

    Article  CAS  Google Scholar 

  5. Inoue, A., Shen, L., Dai, Q., He, C. & Zhang, Y. Cell Res. 21, 1670–1676 (2011).

    Article  CAS  Google Scholar 

  6. Inoue, A. & Zhang, Y. Science 334, 194 (2011).

    Article  CAS  Google Scholar 

  7. Nabel, C.S. & Kohli, R.M. Science 333, 1229–1230 (2011).

    Article  CAS  Google Scholar 

  8. Kellinger, M.W. et al. Nat. Struct. Mol. Biol. 19, 831–833 (2012).

    Article  CAS  Google Scholar 

  9. Aoki, F., Worrad, D.M. & Schultz, R.M. Dev. Biol. 181, 296–307 (1997).

    Article  CAS  Google Scholar 

  10. van Luenen, H.G. et al. Cell 150, 909–921 (2012).

    Article  CAS  Google Scholar 

  11. Borst, P. & Sabatini, R. Annu. Rev. Microbiol. 62, 235–251 (2008).

    Article  CAS  Google Scholar 

  12. Iyer, L.M., Tahiliani, M., Rao, A. & Aravind, L. Cell Cycle 8, 1698–1710 (2009).

    Article  CAS  Google Scholar 

  13. Iyer, L.M., Abhiman, S. & Aravind, L. Prog. Mol. Biol. Transl. Sci. 101, 25–104 (2011).

    Article  CAS  Google Scholar 

  14. Gommers-Ampt, J.H. & Borst, P. FASEB J. 9, 1034–1042 (1995).

    Article  CAS  Google Scholar 

  15. van Leeuwen, F. et al. Genes Dev. 11, 3232–3241 (1997).

    Article  CAS  Google Scholar 

  16. Murata-Kamiya, N. et al. Nucleic Acids Res. 27, 4385–4390 (1999).

    Article  CAS  Google Scholar 

  17. Kamiya, H. et al. J. Biochem. 132, 551–555 (2002).

    Article  CAS  Google Scholar 

  18. Maiti, A. & Drohat, A.C. J. Biol. Chem. 286, 35334–35338 (2011).

    Article  CAS  Google Scholar 

  19. Zhang, L. et al. Nat. Chem. Biol. 8, 328–330 (2012).

    Article  CAS  Google Scholar 

  20. Nabel, C.S. et al. Nat. Chem. Biol. 8, 751–758 (2012).

    Article  CAS  Google Scholar 

  21. Williams, K. et al. Nature 473, 343–348 (2011).

    Article  CAS  Google Scholar 

  22. Wu, H. et al. Genes Dev. 25, 679–684 (2011).

    Article  CAS  Google Scholar 

  23. Huang, Y., Pastor, W.A., Zepeda-Martinez, J.A. & Rao, A. Nat. Protoc. 7, 1897–1908 (2012).

    Article  CAS  Google Scholar 

  24. Pastor, W.A., Huang, Y., Henderson, H.R., Agarwal, S. & Rao, A. Nat. Protoc. 7, 1909–1917 (2012).

    Article  CAS  Google Scholar 

  25. Pastor, W.A. et al. Nature 473, 394–397 (2011).

    Article  CAS  Google Scholar 

  26. Ficz, G. et al. Nature 473, 398–402 (2011).

    Article  CAS  Google Scholar 

  27. Song, C.X. et al. Nat. Methods 9, 75–77 (2011).

    Article  Google Scholar 

  28. Booth, M.J. et al. Science 336, 934–937 (2012).

    Article  CAS  Google Scholar 

  29. Yu, M. et al. Cell 149, 1368–1380 (2012).

    Article  CAS  Google Scholar 

  30. Raiber, E.A. et al. Genome Biol. 13, R69 (2012).

    Article  Google Scholar 

  31. Schiesser, S. et al. Angew. Chem. Int. Edn. Engl. 51, 6516–6520 (2012).

    Article  CAS  Google Scholar 

  32. Cortázar, D., Kunz, C., Saito, Y., Steinacher, R. & Schar, P. DNA Repair (Amst.) 6, 489–504 (2007).

    Article  Google Scholar 

  33. Kallin, E.M. et al. Mol. Cell published online, doi:10.1016/j.molcel.2012.08.007 (13 September 2012).

  34. Shukla, S. et al. Nature 479, 74–79 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Rao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Rao, A. New functions for DNA modifications by TET-JBP. Nat Struct Mol Biol 19, 1061–1064 (2012). https://doi.org/10.1038/nsmb.2437

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2437

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing