Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A transcription factor–based mechanism for mouse heterochromatin formation

A Corrigendum to this article was published on 05 February 2013

This article has been updated

Abstract

Heterochromatin is important for genome integrity and stabilization of gene-expression programs. We have identified the transcription factors Pax3 and Pax9 as redundant regulators of mouse heterochromatin, as they repress RNA output from major satellite repeats by associating with DNA within pericentric heterochromatin. Simultaneous depletion of Pax3 and Pax9 resulted in dramatic derepression of major satellite transcripts, persistent impairment of heterochromatic marks and defects in chromosome segregation. Genome-wide analyses of methylated histone H3 at Lys9 showed enrichment at intergenic major satellite repeats only when these sequences retained intact binding sites for Pax and other transcription factors. Additionally, bioinformatic interrogation of all histone methyltransferase Suv39h–dependent heterochromatic repeat regions in the mouse genome revealed a high concordance with the presence of transcription factor binding sites. These data define a general model in which reiterated arrangement of transcription factor binding sites within repeat sequences is an intrinsic mechanism of the formation of heterochromatin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The transcription factor Pax3 localizes to pericentric heterochromatin through a binding site within the major satellite repeats.
Figure 2: Pax3 represses transcription from major satellite repeats.
Figure 3: Pax3 and Pax9 have redundant functions in protecting mouse pericentric heterochromatin.
Figure 4: Pax3-deficient (shPax9) iMEFs show increased major satellite transcripts in the G1/S and G2 phase of the cell cycle.
Figure 5: ChIP-seq for H3K9me3 at pericentric and intergenic major satellite repeats.
Figure 6: Genome-wide analysis and bioinformatic interrogation of Suv39h-dependent H3K9me3 heterochromatin.
Figure 7: A transcription factor–based model for mouse heterochromatin formation.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Change history

  • 27 December 2012

    In the version of this article initially published, Simone Meidhof's affiliations should have included Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Freiburg, Germany and the Faculty of Biology, Albert Ludwigs University Freiburg, Freiburg, Germany. Acknowledgement of the Excellence Initiative of the German Research Foundation (GSC-4, Spemann Graduate School) was omitted. The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Allshire, R.C. & Karpen, G.H. Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat. Rev. Genet. 9, 923–937 (2008).

    Article  CAS  Google Scholar 

  2. Henikoff, S., Ahmad, K. & Malik, H.S. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293, 1098–1102 (2001).

    Article  CAS  Google Scholar 

  3. Vissel, B. & Choo, K.H. Mouse major (γ) satellite DNA is highly conserved and organized into extremely long tandem arrays: implications for recombination between nonhomologous chromosomes. Genomics 5, 407–414 (1989).

    Article  CAS  Google Scholar 

  4. Garagna, S., Zuccotti, M., Capanna, E. & Redi, C.A. High-resolution organization of mouse telomeric and pericentromeric DNA. Cytogenet. Genome Res. 96, 125–129 (2002).

    Article  CAS  Google Scholar 

  5. Allis, C.D., Jenuwein, T., Reinberg, D. & Caparros, M.-L. Epigenetics Ch. 3, 23–61 (Cold Spring Harbor Laboratory Press, 2007).

  6. Lachner, M., Sengupta, R., Schotta, G. & Jenuwein, T. Trilogies of histone lysine methylation as epigenetic landmarks of the eukaryotic genome. Cold Spring Harb. Symp. Quant. Biol. 69, 209–218 (2004).

    Article  CAS  Google Scholar 

  7. Grewal, S.I. & Elgin, S.C. Transcription and RNA interference in the formation of heterochromatin. Nature 447, 399–406 (2007).

    Article  CAS  Google Scholar 

  8. Martienssen, R.A., Kloc, A., Slotkin, R.K. & Tanurdzic, M. Epigenetic inheritance and reprogramming in plants and fission yeast. Cold Spring Harb. Symp. Quant. Biol. 73, 265–271 (2008).

    Article  CAS  Google Scholar 

  9. Maison, C. et al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat. Genet. 30, 329–334 (2002).

    Article  Google Scholar 

  10. Martens, J.H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800–812 (2005).

    Article  CAS  Google Scholar 

  11. Lu, J. & Gilbert, D.M. Proliferation-dependent and cell cycle–regulated transcription of mouse pericentric heterochromatin. J. Cell Biol. 179, 411–421 (2007).

    Article  CAS  Google Scholar 

  12. Probst, A.V. et al. A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev. Cell 19, 625–638 (2010).

    Article  CAS  Google Scholar 

  13. Santenard, A. et al. Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat. Cell Biol. 12, 853–862 (2010).

    Article  CAS  Google Scholar 

  14. Ting, D.T. et al. Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science 331, 593–596 (2011).

    Article  CAS  Google Scholar 

  15. Fodor, B.D., Shukeir, N., Reuter, G. & Jenuwein, T. Mammalian Su(var) genes in chromatin control. Annu. Rev. Cell Dev. Biol. 26, 471–501 (2010).

    Article  CAS  Google Scholar 

  16. Hsieh, M.J., Yao, Y.L., Lai, I.L. & Yang, W.M. Transcriptional repression activity of PAX3 is modulated by competition between corepressor KAP1 and heterochromatin protein 1. Biochem. Biophys. Res. Commun. 349, 573–581 (2006).

    Article  CAS  Google Scholar 

  17. Chalepakis, G., Wijnholds, J. & Gruss, P. Pax-3–DNA interaction: flexibility in the DNA binding and induction of DNA conformational changes by paired domains. Nucleic Acids Res. 22, 3131–3137 (1994).

    Article  CAS  Google Scholar 

  18. Wilson, D., Sheng, G., Lecuit, T., Dostatni, N. & Desplan, C. Cooperative dimerization of paired class homeo domains on DNA. Genes Dev. 7, 2120–2134 (1993).

    Article  CAS  Google Scholar 

  19. Robson, E.J., He, S.J. & Eccles, M.R.A. PANorama of PAX genes in cancer and development. Nat. Rev. Cancer 6, 52–62 (2006).

    Article  CAS  Google Scholar 

  20. Lang, D., Powell, S.K., Plummer, R.S., Young, K.P. & Ruggeri, B.A. PAX genes: roles in development, pathophysiology, and cancer. Biochem. Pharmacol. 73, 1–14 (2007).

    Article  CAS  Google Scholar 

  21. Corry, G.N., Hendzel, M.J. & Underhill, D.A. Subnuclear localization and mobility are key indicators of PAX3 dysfunction in Waardenburg syndrome. Hum. Mol. Genet. 17, 1825–1837 (2008).

    Article  CAS  Google Scholar 

  22. Vassen, L., Fiolka, K. & Moroy, T. Gfi1b alters histone methylation at target gene promoters and sites of γ-satellite containing heterochromatin. EMBO J. 25, 2409–2419 (2006).

    Article  CAS  Google Scholar 

  23. Corry, G.N. et al. The PAX3 paired domain and homeodomain function as a single binding module in vivo to regulate subnuclear localization and mobility by a mechanism that requires base-specific recognition. J. Mol. Biol. 402, 178–193 (2010).

    Article  CAS  Google Scholar 

  24. Chi, N. & Epstein, J.A. Getting your Pax straight: Pax proteins in development and disease. Trends Genet. 18, 41–47 (2002).

    Article  CAS  Google Scholar 

  25. Chan, W.Y., Cheung, C.S., Yung, K.M. & Copp, A.J. Cardiac neural crest of the mouse embryo: axial level of origin, migratory pathway and cell autonomy of the splotch (Sp2H) mutant effect. Development 131, 3367–3379 (2004).

    Article  CAS  Google Scholar 

  26. Epstein, D.J., Vekemans, M. & Gros, P. Splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 67, 767–774 (1991).

    Article  CAS  Google Scholar 

  27. Mansouri, A., Pla, P., Larue, L. & Gruss, P. Pax3 acts cell autonomously in the neural tube and somites by controlling cell surface properties. Development 128, 1995–2005 (2001).

    CAS  PubMed  Google Scholar 

  28. Peters, A.H. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577–1589 (2003).

    Article  CAS  Google Scholar 

  29. Neumann, B. et al. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell-division genes. Nature 464, 721–727 (2010).

    Article  CAS  Google Scholar 

  30. Matsui, T. et al. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464, 927–931 (2010).

    Article  CAS  Google Scholar 

  31. Yamashita, K., Sato, A., Asashima, M., Wang, P.C. & Nishinakamura, R. Mouse homolog of SALL1, a causative gene for Townes-Brocks syndrome, binds to A/T-rich sequences in pericentric heterochromatin via its C-terminal zinc-finger domains. Genes Cells 12, 171–182 (2007).

    Article  CAS  Google Scholar 

  32. Robinson, J.T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  Google Scholar 

  33. Manke, T., Roider, H.G. & Vingron, M. Statistical modeling of transcription factor binding affinities predicts regulatory interactions. PLoS Comput. Biol. 4, e1000039 (2008).

    Article  Google Scholar 

  34. Roider, H.G., Kanhere, A., Manke, T. & Vingron, M. Predicting transcription factor affinities to DNA from a biophysical model. Bioinformatics 23, 134–141 (2007).

    Article  CAS  Google Scholar 

  35. Thomas-Chollier, M. et al. Transcription factor binding predictions using TRAP for the analysis of ChIP-seq data and regulatory SNPs. Nat. Protoc. 6, 1860–1869 (2011).

    Article  CAS  Google Scholar 

  36. Jia, S., Noma, K. & Grewal, S.I. RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science 304, 1971–1976 (2004).

    Article  CAS  Google Scholar 

  37. Tsukiyama, T., Becker, P.B. & Wu, C. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367, 525–532 (1994).

    Article  CAS  Google Scholar 

  38. Suso Platero, J., Csink, A.K., Quintanilla, A. & Henikoff, S. Changes in chromosomal localization of heterochromatin-binding proteins during the cell cycle in Drosophila. J. Cell Biol. 140, 1297–1306 (1998).

    Article  Google Scholar 

  39. Cléard, F. & Spierer, P. Position-effect variegation in Drosophila: the modifier Su(var)3–7 is a modular DNA-binding protein. EMBO Rep. 2, 1095–1100 (2001).

    Article  Google Scholar 

  40. Vandewalle, C., Van Roy, F. & Berx, G. The role of the ZEB family of transcription factors in development and disease. Cell. Mol. Life Sci. 66, 773–787 (2009).

    Article  CAS  Google Scholar 

  41. Delattre, M., Spierer, A., Jaquet, Y. & Spierer, P. Increased expression of Drosophila Su(var)3–7 triggers Su(var)3–9-dependent heterochromatin formation. J. Cell Sci. 117, 6239–6247 (2004).

    Article  CAS  Google Scholar 

  42. Nagano, T. et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322, 1717–1720 (2008).

    Article  CAS  Google Scholar 

  43. Tsai, M.C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010).

    Article  CAS  Google Scholar 

  44. Ahmad, K. & Henikoff, S. Modulation of a transcription factor counteracts heterochromatic gene silencing in Drosophila. Cell 104, 839–847 (2001).

    Article  CAS  Google Scholar 

  45. Festenstein, R. et al. Locus control region function and heterochromatin-induced position effect variegation. Science 271, 1123–1125 (1996).

    Article  CAS  Google Scholar 

  46. Reyes-Turcu, F.E., Zhang, K., Zofall, M., Chen, E. & Grewal, S.I. Defects in RNA quality control factors reveal RNAi-independent nucleation of heterochromatin. Nat. Struct. Mol. Biol. 18, 1132–1138 (2011).

    Article  CAS  Google Scholar 

  47. Zofall, M. et al. RNA elimination machinery targeting meiotic mRNAs promotes facultative heterochromatin formation. Science 335, 96–100 (2012).

    Article  CAS  Google Scholar 

  48. Peters, A.H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).

    Article  CAS  Google Scholar 

  49. Schotta, G. et al. A silencing pathway to induce H3–K9 and H4–K20 trimethylation at constitutive heterochromatin. Genes Dev. 18, 1251–1262 (2004).

    Article  CAS  Google Scholar 

  50. Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13, 1192–1200 (2003).

    Article  CAS  Google Scholar 

  51. Sambrook, J. & Russell, D.W. Molecular Cloning: A Laboratory Manual 3rd edn, Vol. 1, 7.51–7.62 (Cold Spring Harbor Laboratory Press, 2001).

  52. Ye, T. et al. seqMINER: an integrated ChIP-seq data interpretation platform. Nucleic Acids Res. 39, e35 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Copp (University College London Institute of Child Health) for providing Sp2H mice, A. Mansouri (Max Planck Institute for Biophysical Chemistry) for Pax3-null ESCs and M. Busslinger (Research Institute of Molecular Pathology) for the Pax5 antibody. The Pax3 monoclonal antibody developed by C. Ordahl was obtained from the Developmental Studies Hybridoma Bank, developed under the auspices of the US National Institute of Child Health and Human Development and maintained by the University of Iowa Department of Biological Sciences. We thank D. Gilbert (Florida State University) and R. Agrelo (Institut Pasteur de Montevideo) for advice on RNA-FISH protocols and S. Rudloff (Max Planck Institute of Immunobiology and Epigenetics) for providing the pCAGGs plasmid. ChIP-seq was performed at the Deep-Sequencing/Bioinformatics Unit of the Max Planck Institute of Immunobiology and Epigenetics. In particular, we would like to thank S. Diehl for processing and quality control of the raw data and N. Noureen and F. Ramirez for help with the genome-wide analyses. This work was supported by the Research Institute of Molecular Pathology through Boehringer Ingelheim (T.J.), the European Union Network of Excellence 'The Epigenome' (T.J., LSHG-CT-2004-503433), the Genome Research in Austria initiative (T.J.), the German Research Foundation (T.J. and T.B., CRC992 Medical Epigenetics) and the Max Planck Society (T.J.) and the Excellence Initiative of the German Research Foundation (GSC-4, Spemann Graduate School; S.M.).

Author information

Authors and Affiliations

Authors

Contributions

A.B.K. and V.P. designed and performed most of the experiments, analyzed the data and contributed equally to this manuscript. M.S. made the initial observation of Pax3 localization to major satellites, generated the Pax3-deficient MEFs and contributed to the analysis of RNA output in Pax3-deficient MEFs. I.A.d.l.R.-V. did ChIP-seq and contributed to the analysis of intergenic major satellites. S.v.d.N. carried out the Pax9 EMSA experiments, J.P. performed the northern blot analysis and B.G. conducted the dsRNA analysis. N.S., S.O. and M.P. provided excellent technical assistance. S.M. and T.B. shared expertise and reagents for the analysis of Zeb1 in mouse and human cells. T.M. did the TRAP analysis of all Suv39h-dependent heterochromatic regions. M.L. and T.J. advised on experimental design and interpretation of data and wrote the manuscript.

Corresponding author

Correspondence to Thomas Jenuwein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1 and 2, and Supplementary Note (PDF 5070 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulut-Karslioglu, A., Perrera, V., Scaranaro, M. et al. A transcription factor–based mechanism for mouse heterochromatin formation. Nat Struct Mol Biol 19, 1023–1030 (2012). https://doi.org/10.1038/nsmb.2382

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2382

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing