Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum

Abstract

The degradation of misfolded secretory proteins is ultimately mediated by the ubiquitin-proteasome system in the cytoplasm, therefore endoplasmic reticulum–associated degradation (ERAD) substrates must be dislocated across the ER membrane through a process driven by the AAA ATPase p97/VCP. Derlins recruit p97/VCP and have been proposed to be part of the dislocation machinery. Here we report that Derlins are inactive members of the rhomboid family of intramembrane proteases and bind p97/VCP through C-terminal SHP boxes. Human Derlin-1 harboring mutations within the rhomboid domain stabilized mutant α-1 antitrypsin (NHK) at the cytosolic face of the ER membrane without disrupting the p97/VCP interaction. We propose that substrate interaction and p97/VCP recruitment are separate functions that are essential for dislocation and can be assigned respectively to the rhomboid domain and the C terminus of Derlin-1. These data suggest that intramembrane proteolysis and protein dislocation share unexpected mechanistic features.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Derlins belong to the rhomboid family.
Figure 2: p97/VCP binding to Derlin-1 through an SHP box is required for efficient dislocation of NHK.
Figure 3: The GxxxG motif in the Derlin-1 rhomboid domain is required for the dislocation of NHK.
Figure 4: The Derlin-1 WR motif is essential for the dislocation of NHK.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Lilley, B.N. & Ploegh, H.L. A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429, 834–840 (2004).

    Article  CAS  Google Scholar 

  2. Ye, Y., Shibata, Y., Yun, C., Ron, D. & Rapoport, T.A. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429, 841–847 (2004).

    Article  CAS  Google Scholar 

  3. Younger, J.M. et al. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell 126, 571–582 (2006).

    Article  CAS  Google Scholar 

  4. Oda, Y. et al. Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. J. Cell Biol. 172, 383–393 (2006).

    Article  CAS  Google Scholar 

  5. Knop, M., Finger, A., Braun, T., Hellmuth, K. & Wolf, D.H. Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J. 15, 753–763 (1996).

    Article  CAS  Google Scholar 

  6. Taxis, C. et al. Use of modular substrates demonstrates mechanistic diversity and reveals differences in chaperone requirement of ERAD. J. Biol. Chem. 278, 35903–35913 (2003).

    Article  CAS  Google Scholar 

  7. Carvalho, P., Goder, V. & Rapoport, T.A. Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126, 361–373 (2006).

    Article  CAS  Google Scholar 

  8. Hitt, R. & Wolf, D.H. Der1p, a protein required for degradation of malfolded soluble proteins of the endoplasmic reticulum: topology and Der1-like proteins. FEMS. Yeast Res. 4, 721–729 (2004).

    Article  CAS  Google Scholar 

  9. Sato, B.K. & Hampton, R.Y. Yeast Derlin Dfm1 interacts with Cdc48 and functions in ER homeostasis. Yeast 23, 1053–1064 (2006).

    Article  CAS  Google Scholar 

  10. Stolz, A., Schweizer, R.S., Schafer, A. & Wolf, D.H. Dfm1 forms distinct complexes with Cdc48 and the ER ubiquitin ligases and is required for ERAD. Traffic 11, 1363–1369 (2010).

    Article  CAS  Google Scholar 

  11. Lilley, B.N. & Ploegh, H.L. Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. Proc. Natl. Acad. Sci. USA 102, 14296–14301 (2005).

    Article  CAS  Google Scholar 

  12. Ye, Y. et al. Inaugural Article: Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane. Proc. Natl. Acad. Sci. USA 102, 14132–14138 (2005).

    Article  CAS  Google Scholar 

  13. Carvalho, P., Stanley, A.M. & Rapoport, T.A. Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell 143, 579–591 (2010).

    Article  CAS  Google Scholar 

  14. Wahlman, J. et al. Real-time fluorescence detection of ERAD substrate retrotranslocation in a mammalian in vitro system. Cell 129, 943–955 (2007).

    Article  CAS  Google Scholar 

  15. Freeman, M. Rhomboid proteases and their biological functions. Annu. Rev. Genet. 42, 191–210 (2008).

    Article  CAS  Google Scholar 

  16. Urban, S., Lee, J.R. & Freeman, M. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107, 173–182 (2001).

    Article  CAS  Google Scholar 

  17. Urban, S., Lee, J.R. & Freeman, M. A family of Rhomboid intramembrane proteases activates all Drosophila membrane-tethered EGF ligands. EMBO J. 21, 4277–4286 (2002).

    Article  CAS  Google Scholar 

  18. McQuibban, G.A., Saurya, S. & Freeman, M. Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423, 537–541 (2003).

    Article  CAS  Google Scholar 

  19. Wang, Y., Zhang, Y. & Ha, Y. Crystal structure of a rhomboid family intramembrane protease. Nature 444, 179–180 (2006).

    Article  CAS  Google Scholar 

  20. Lemberg, M.K. & Freeman, M. Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome Res. 17, 1634–1646 (2007).

    Article  CAS  Google Scholar 

  21. Kelley, L.A. & Sternberg, M.J.E. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4, 363–371 (2009).

    Article  CAS  Google Scholar 

  22. Lemberg, M.K. et al. Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. EMBO J. 24, 464–472 (2005).

    Article  CAS  Google Scholar 

  23. Urban, S. & Wolfe, M.S. Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc. Natl. Acad. Sci. USA 102, 1883–1888 (2005).

    Article  CAS  Google Scholar 

  24. Urban, S., Schlieper, D. & Freeman, M. Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids. Curr. Biol. 12, 1507–1512 (2002).

    Article  CAS  Google Scholar 

  25. Maegawa, S., Ito, K. & Akiyama, Y. Proteolytic action of GlpG, a rhomboid protease in the Escherichia coli cytoplasmic membrane. Biochemistry 44, 13543–13552 (2005).

    Article  CAS  Google Scholar 

  26. Baker, R.P., Young, K., Feng, L., Shi, Y. & Urban, S. Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate. Proc. Natl. Acad. Sci. USA 104, 8257–8262 (2007).

    Article  CAS  Google Scholar 

  27. Söding, J., Biegert, A. & Lupas, A.N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005).

    Article  Google Scholar 

  28. Stevenson, L.G. et al. Rhomboid protease AarA mediates quorum-sensing in Providencia stuartii by activating TatA of the twin-arginine translocase. Proc. Natl. Acad. Sci. USA 104, 1003–1008 (2007).

    Article  CAS  Google Scholar 

  29. Zhou, X.W., Blackman, M.J., Howell, S.A. & Carruthers, V.B. Proteomic analysis of cleavage events reveals a dynamic two-step mechanism for proteolysis of a key parasite adhesive complex. Mol. Cell. Proteomics 3, 565–576 (2004).

    Article  CAS  Google Scholar 

  30. Brossier, F., Jewett, T.J., Sibley, L.D. & Urban, S. A spatially localized rhomboid protease cleaves cell surface adhesins essential for invasion by Toxoplasma. Proc. Natl. Acad. Sci. USA 102, 4146–4151 (2005).

    Article  CAS  Google Scholar 

  31. Wu, Z. et al. Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Nat. Struct. Mol. Biol. 13, 1084–1091 (2006).

    Article  CAS  Google Scholar 

  32. Bondar, A.-N., del Val, C. & White, S.H. Rhomboid protease dynamics and lipid interactions. Structure 17, 395–405 (2009).

    Article  CAS  Google Scholar 

  33. Wang, Y., Maegawa, S., Akiyama, Y. & Ha, Y. The role of L1 loop in the mechanism of rhomboid intramembrane protease GlpG. J. Mol. Biol. 374, 1104–1113 (2007).

    Article  CAS  Google Scholar 

  34. Urban, S. & Baker, R.P. In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells. Biol. Chem. 389, 1107–1115 (2008).

    Article  CAS  Google Scholar 

  35. von Heijne, G. & Gavel, Y. Topogenic signals in integral membrane proteins. Eur. J. Biochem. 174, 671–678 (1988).

    Article  CAS  Google Scholar 

  36. Jeyaraju, D.V., McBride, H.M., Hill, R.B. & Pellegrini, L. Structural and mechanistic basis of Parl activity and regulation. Cell Death Differ. 18, 1531–1539 (2011).

    Article  CAS  Google Scholar 

  37. Ye, Y., Meyer, H.H. & Rapoport, T.A. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414, 652–656 (2001).

    Article  CAS  Google Scholar 

  38. Jarosch, E. et al. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat. Cell Biol. 4, 134–139 (2002).

    Article  CAS  Google Scholar 

  39. Rabinovich, E., Kerem, A., Fröhlich, K.-U., Diamant, N. & Bar-Nun, S. AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol. Cell. Biol. 22, 626–634 (2002).

    Article  CAS  Google Scholar 

  40. Bruderer, R.M., Brasseur, C. & Meyer, H.H. The AAA ATPase p97/VCP interacts with its alternative co-factors, Ufd1-Npl4 and p47, through a common bipartite binding mechanism. J. Biol. Chem. 279, 49609–49616 (2004).

    Article  CAS  Google Scholar 

  41. Mueller, B., Klemm, E.J., Spooner, E., Claessen, J.H. & Ploegh, H.L. SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins. Proc. Natl. Acad. Sci. USA 105, 12325–12330 (2008).

    Article  CAS  Google Scholar 

  42. Termine, D., Wu, Y., Liu, Y. & Sifers, R.N. Alpha1-antitrypsin as model to assess glycan function in endoplasmic reticulum. Methods 35, 348–353 (2005).

    Article  CAS  Google Scholar 

  43. Hirsch, C., Blom, D. & Ploegh, H.L. A role for N-glycanase in the cytosolic turnover of glycoproteins. EMBO J. 22, 1036–1046 (2003).

    Article  CAS  Google Scholar 

  44. Blom, D., Hirsch, C., Stern, P., Tortorella, D. & Ploegh, H.L. A glycosylated type I membrane protein becomes cytosolic when peptide: N-glycanase is compromised. EMBO J. 23, 650–658 (2004).

    Article  CAS  Google Scholar 

  45. Hirsch, C., Misaghi, S., Blom, D., Pacold, M.E. & Ploegh, H.L. Yeast N-glycanase distinguishes between native and non-native glycoproteins. EMBO Rep. 5, 201–206 (2004).

    Article  CAS  Google Scholar 

  46. Elkabetz, Y., Shapira, I., Rabinovich, E. & Bar-Nun, S. Distinct steps in dislocation of luminal endoplasmic reticulum-associated degradation substrates: roles of endoplamic reticulum-bound p97/Cdc48p and proteasome. J. Biol. Chem. 279, 3980–3989 (2004).

    Article  CAS  Google Scholar 

  47. Baker, B.M. & Tortorella, D. Dislocation of an endoplasmic reticulum membrane glycoprotein involves the formation of partially dislocated ubiquitinated polypeptides. J. Biol. Chem. 282, 26845–26856 (2007).

    Article  CAS  Google Scholar 

  48. Horn, S.C. et al. Usa1 functions as a scaffold of the HRD-ubiquitin ligase. Mol. Cell 36, 782–793 (2009).

    Article  CAS  Google Scholar 

  49. Tatsuta, T., Augustin, S., Nolden, M., Friedrichs, B. & Langer, T. m-AAA protease-driven membrane dislocation allows intramembrane cleavage by rhomboid in mitochondria. EMBO J. 26, 325–335 (2007).

    Article  CAS  Google Scholar 

  50. Zettl, M., Adrain, C., Strisovsky, K., Lastun, V. & Freeman, M. Rhomboid family pseudoproteases use the ER quality control machinery to regulate intercellular signaling. Cell 145, 79–91 (2011).

    Article  CAS  Google Scholar 

  51. DeLaBarre, B., Christianson, J.C., Kopito, R.R. & Brunger, A.T. Central pore residues mediate the p97/VCP activity required for ERAD. Mol. Cell 22, 451–462 (2006).

    Article  CAS  Google Scholar 

  52. Tang, F.-C. et al. Stable suppression of gene expression in murine embryonic stem cells by RNAi directed from DNA vector-based short hairpin RNA. Stem Cells 22, 93–99 (2004).

    Article  CAS  Google Scholar 

  53. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Pearce, J. Christianson and C. Richter for their insightful comments on the manuscript. We also thank H. Ploegh (Whitehead Institute of Biomedical Research) and W. Lennarz (Stony Brook University) for generously providing reagents. This work was supported by a grant from the National Institute of General Medical Science (NIGMS) to R.R.K. E.J.G. was supported by a US National Institutes of Health (NIH) predoctoral training grant and J.A.O. is the recipient of a National Research Service Award from the NIH.

Author information

Authors and Affiliations

Authors

Contributions

E.J.G. and R.R.K. contributed to the design of all of the experiments and wrote the manuscript. E.J.G. did the experiments and analyses in Figure 1a–d,f,g; Figure 24; and Supplementary Figures 1, 2, 4 and 5. The microscopy experiments in Figure 1e and Supplementary Figures 3 and 6 were conducted by J.A.O. All authors contributed to the interpretation and conclusions of the experiments.

Corresponding author

Correspondence to Ron R Kopito.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 5547 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenblatt, E., Olzmann, J. & Kopito, R. Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum. Nat Struct Mol Biol 18, 1147–1152 (2011). https://doi.org/10.1038/nsmb.2111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing