Resource | Published:

Biogenic mechanisms and utilization of small RNAs derived from human protein-coding genes

Nature Structural & Molecular Biology volume 18, pages 10751082 (2011) | Download Citation

This article has been updated

Abstract

Efforts to catalog eukaryotic transcripts have uncovered many small RNAs (sRNAs) derived from gene termini and splice sites. Their biogenesis pathways are largely unknown, but a mechanism based on backtracking of RNA polymerase II (RNAPII) has been suggested. By sequencing transcripts 12–100 nucleotides in length from cells depleted of major RNA degradation enzymes and RNAs associated with Argonaute (AGO1/2) effector proteins, we provide mechanistic models for sRNA production. We suggest that neither splice site–associated (SSa) nor transcription start site–associated (TSSa) RNAs arise from RNAPII backtracking. Instead, SSa RNAs are largely degradation products of splicing intermediates, whereas TSSa RNAs probably derive from nascent RNAs protected by stalled RNAPII against nucleolysis. We also reveal new AGO1/2-associated RNAs derived from 3′ ends of introns and from mRNA 3′ UTRs that appear to draw from noncanonical microRNA biogenesis pathways.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Change history

  • 21 August 2011

    In the version of this article initially published online, in Figure 5a, the x-axis tick marks and labels were placed incorrectly; in Figure 5c, there were two extraneous tracks; and in Figure 5d, the y-axis label was missing, a stem in the RNA was incorrectly colored in gray (instead of red) and the sRNA tracks were incorrectly shifted to the left. These errors have been corrected for the print, PDF and HTML versions of this article.

Accessions

Gene Expression Omnibus

References

  1. 1.

    The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat. Rev. Genet. 10, 833–844 (2009).

  2. 2.

    & Whole genome transcriptome analysis. RNA Biol. 6, 107–112 (2009).

  3. 3.

    , , & Evolution, biogenesis and function of promoter-associated RNAs. Cell Cycle 8, 2332–2338 (2009).

  4. 4.

    , , & Divergent transcription: a new feature of active promoters. Cell Cycle 8, 2557–2564 (2009).

  5. 5.

    , , & RNA polymerase plays both sides: vivid and bidirectional transcription around and upstream of active promoters. Cell Cycle 8, 1106–1107 (2009).

  6. 6.

    & Pervasive transcription constitutes a new level of eukaryotic genome regulation. EMBO Rep. 10, 973–982 (2009).

  7. 7.

    , & The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11, 597–610 (2010).

  8. 8.

    & Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).

  9. 9.

    MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

  10. 10.

    & Argonaute proteins: key players in RNA silencing. Nat. Rev. Mol. Cell Biol. 9, 22–32 (2008).

  11. 11.

    & Argonaute proteins: mediators of RNA silencing. Mol. Cell 26, 611–623 (2007).

  12. 12.

    et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007).

  13. 13.

    Affymetrix/Cold Spring Harbor Laboratory ENCODE Transcriptome Project. Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs. Nature 457, 1028–1032 (2009).

  14. 14.

    et al. Divergent transcription from active promoters. Science 322, 1849–1851 (2008).

  15. 15.

    et al. Tiny RNAs associated with transcription start sites in animals. Nat. Genet. 41, 572–578 (2009).

  16. 16.

    et al. Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans. Nat. Struct. Mol. Biol. 17, 1030–1034 (2010).

  17. 17.

    et al. New class of gene-termini-associated human RNAs suggests a novel RNA copying mechanism. Nature 466, 642–646 (2010).

  18. 18.

    et al. PROMoter uPstream Transcripts share characteristics with mRNAs and are produced upstream of all three major types of mammalian promoters. Nucleic Acids Res. published online, doi:10.1093/nar/gkr370 (19 May 2011).

  19. 19.

    et al. Limitations and possibilities of small RNA digital gene expression profiling. Nat. Methods 6, 474–476 (2009).

  20. 20.

    & Variation in the size of nascent RNA cleavage products as a function of transcript length and elongation competence. J. Biol. Chem. 270, 30441–30447 (1995).

  21. 21.

    & The increment of SII-facilitated transcript cleavage varies dramatically between elongation competent and incompetent RNA polymerase II ternary complexes. J. Biol. Chem. 268, 12874–12885 (1993).

  22. 22.

    et al. Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Science 327, 335–338 (2010).

  23. 23.

    et al. Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat. Rev. Genet. 8, 424–436 (2007).

  24. 24.

    et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nat. Genet. 38, 626–635 (2006).

  25. 25.

    , , , & A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).

  26. 26.

    et al. RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat. Genet. 39, 1512–1516 (2007).

  27. 27.

    et al. RNA polymerase is poised for activation across the genome. Nat. Genet. 39, 1507–1511 (2007).

  28. 28.

    et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).

  29. 29.

    et al. Nucleosome organization in the Drosophila genome. Nature 453, 358–362 (2008).

  30. 30.

    et al. PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat. Biotechnol. 27, 66–75 (2009).

  31. 31.

    et al. Structure-function studies of the RNA polymerase II elongation complex. Acta Crystallogr. D Biol. Crystallogr. 65, 112–120 (2009).

  32. 32.

    , , , & The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130, 89–100 (2007).

  33. 33.

    , & Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83–86 (2007).

  34. 34.

    , , , & MicroRNA biogenesis via splicing and exosome-mediated trimming in Drosophila. Mol. Cell 38, 900–907 (2010).

  35. 35.

    , , , & Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev. 22, 2773–2785 (2008).

  36. 36.

    , , & Direct detection of small RNAs using splinted ligation. Nat. Protoc. 3, 279–287 (2008).

  37. 37.

    et al. A comprehensive survey of 3′ animal miRNA modification events and a possible role for 3′ adenylation in modulating miRNA targeting effectiveness. Genome Res. 20, 1398–1410 (2010).

  38. 38.

    et al. NELF and GAGA factor are linked to promoter-proximal pausing at many genes in Drosophila. Mol. Cell. Biol. 28, 3290–3300 (2008).

  39. 39.

    , , & The yeast 5′–3′ exonuclease Rat1p functions during transcription elongation by RNA polymerase II. Mol. Cell 37, 580–587 (2010).

  40. 40.

    , , , & Mammalian mirtron genes. Mol. Cell 28, 328–336 (2007).

  41. 41.

    et al. A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res. 18, 957–964 (2008).

  42. 42.

    et al. Repertoire of bovine miRNA and miRNA-like small regulatory RNAs expressed upon viral infection. PLoS ONE 4, e6349 (2009).

  43. 43.

    et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 24, 992–1009 (2010).

  44. 44.

    et al. Computational and experimental identification of mirtrons in Drosophila melanogaster and Caenorhabditis elegans. Genome Res. 21, 286–300 (2011).

  45. 45.

    & miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157 (2011).

  46. 46.

    et al. Evolutionary flux of canonical microRNAs and mirtrons in Drosophila. Nat. Genet. 42, 6–9, author reply 9–10 (2010).

  47. 47.

    et al. RNA secondary structure in mutually exclusive splicing. Nat. Struct. Mol. Biol. 18, 159–168 (2011).

  48. 48.

    , , & Human branch point consensus sequence is yUnAy. Nucleic Acids Res. 36, 2257–2267 (2008).

  49. 49.

    & Dicer-independent primal RNAs trigger RNAi and heterochromatin formation. Cell 140, 504–516 (2010).

  50. 50.

    et al. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell 137, 509–521 (2009).

  51. 51.

    et al. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137, 522–535 (2009).

  52. 52.

    et al. A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature 461, 1296–1299 (2009).

  53. 53.

    , , , & An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila. EMBO J. 29, 3301–3317 (2010).

  54. 54.

    et al. A broadly conserved pathway generates 3′UTR-directed primary piRNAs. Curr. Biol. 19, 2066–2076 (2009).

  55. 55.

    et al. RNA exosome depletion reveals transcription upstream of active human promoters. Science 322, 1851–1854 (2008).

  56. 56.

    et al. A human snoRNA with microRNA-like functions. Mol. Cell 32, 519–528 (2008).

  57. 57.

    , , , & A multifunctional human Argonaute2-specific monoclonal antibody. RNA 14, 1244–1253 (2008).

  58. 58.

    , , & Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

  59. 59.

    , , & Systematic clustering of transcription start site landscapes. PLoS ONE (in the press).

  60. 60.

    et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

Download references

Acknowledgements

We thank A. Jacquier, A.H. Lund, K. Adelman and members of the T.H.J. and A.S. laboratories for stimulating discussions. The following colleagues are acknowledged for sharing antibodies: J. Lykke-Andersen (Division of Biology, University of California, San Diego), D.L. Black (Howard Hughes Medical Institute, Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles), G.J. Pruijn (Department of Biomolecular Chemistry, Nijmegen Center for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University) and K. Nishikura (The Wistar Institute). This work was supported by the Danish National Research Foundation, the Danish Cancer Society and the Lundbeck Foundation (to T.H.J.) and the EU 7th Framework Programme (FP7/2007–2013)/ERC grant agreement 204135, the Novo Nordisk Foundation, the Danish Cancer Society and the Lundbeck Foundation (to A.S.). E.V. was supported by the Danish Council for Independent Research. P.P. was the recipient of a research grant from the Lundbeck Foundation during part of this work. Work in the laboratory of G.M. was supported by the Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst (BayGene), the European Union (ERC grant 'sRNAs') and the Deutsche Forschungsgemeinschaft (DFG, Me 2064/2-2 and FOR855). Sequencing was carried out at the Beijing Genome Institute (BGI) in Shenzhen, China.

Author information

Author notes

    • Eivind Valen
    • , Pascal Preker
    •  & Peter Refsing Andersen

    These authors contributed equally to this work.

Affiliations

  1. The Bioinformatics Centre, Department of Biology and the Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.

    • Eivind Valen
    • , Xiaobei Zhao
    • , Yun Chen
    •  & Albin Sandelin
  2. Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology, Aarhus University, Denmark.

    • Pascal Preker
    • , Peter Refsing Andersen
    •  & Torben Heick Jensen
  3. Laboratory of RNA Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany.

    • Christine Ender
    •  & Gunter Meister
  4. Department of Biochemistry, University of Regensburg, Regensburg, Germany.

    • Anne Dueck
    •  & Gunter Meister

Authors

  1. Search for Eivind Valen in:

  2. Search for Pascal Preker in:

  3. Search for Peter Refsing Andersen in:

  4. Search for Xiaobei Zhao in:

  5. Search for Yun Chen in:

  6. Search for Christine Ender in:

  7. Search for Anne Dueck in:

  8. Search for Gunter Meister in:

  9. Search for Albin Sandelin in:

  10. Search for Torben Heick Jensen in:

Contributions

E.V., P.P., P.R.A., G.M., A.S. and T.H.J. designed the experiments. P.P., P.R.A., C.E. and A.D. conducted the experiments. E.V., X.Z., Y.C. and A.S. did the bioinformatics analyses. E.V., P.P., P.R.A., G.M., A.S. and T.H.J. evaluated the results. E.V., P.P., P.R.A., X.Z., Y.C., A.S. and T.H.J. produced the figures. E.V., P.P., P.R.A., A.S. and T.H.J. wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Albin Sandelin or Torben Heick Jensen.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–9 and Supplementary Tables 1 and 2

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nsmb.2091

Further reading

  • Regulation of microRNA biogenesis and its crosstalk with other cellular pathways

    • Thomas Treiber
    • , Nora Treiber
    •  & Gunter Meister

    Nature Reviews Molecular Cell Biology (2019)

  • Controlling nuclear RNA levels

    • Manfred Schmid
    •  & Torben Heick Jensen

    Nature Reviews Genetics (2018)

  • Deep intronic mutations and human disease

    • Rita Vaz-Drago
    • , Noélia Custódio
    •  & Maria Carmo-Fonseca

    Human Genetics (2017)

  • An integrated expression atlas of miRNAs and their promoters in human and mouse

    • Derek de Rie
    • , Imad Abugessaisa
    • , Tanvir Alam
    • , Erik Arner
    • , Peter Arner
    • , Haitham Ashoor
    • , Gaby Åström
    • , Magda Babina
    • , Nicolas Bertin
    • , A Maxwell Burroughs
    • , Ailsa J Carlisle
    • , Carsten O Daub
    • , Michael Detmar
    • , Ruslan Deviatiiarov
    • , Alexandre Fort
    • , Claudia Gebhard
    • , Daniel Goldowitz
    • , Sven Guhl
    • , Thomas J Ha
    • , Jayson Harshbarger
    • , Akira Hasegawa
    • , Kosuke Hashimoto
    • , Meenhard Herlyn
    • , Peter Heutink
    • , Kelly J Hitchens
    • , Chung Chau Hon
    • , Edward Huang
    • , Yuri Ishizu
    • , Chieko Kai
    • , Takeya Kasukawa
    • , Peter Klinken
    • , Timo Lassmann
    • , Charles-Henri Lecellier
    • , Weonju Lee
    • , Marina Lizio
    • , Vsevolod Makeev
    • , Anthony Mathelier
    • , Yulia A Medvedeva
    • , Niklas Mejhert
    • , Christopher J Mungall
    • , Shohei Noma
    • , Mitsuhiro Ohshima
    • , Mariko Okada-Hatakeyama
    • , Helena Persson
    • , Patrizia Rizzu
    • , Filip Roudnicky
    • , Pål Sætrom
    • , Hiroki Sato
    • , Jessica Severin
    • , Jay W Shin
    • , Rolf K Swoboda
    • , Hiroshi Tarui
    • , Hiroo Toyoda
    • , Kristoffer Vitting-Seerup
    • , Louise Winteringham
    • , Yoko Yamaguchi
    • , Kayoko Yasuzawa
    • , Misako Yoneda
    • , Noriko Yumoto
    • , Susan Zabierowski
    • , Peter G Zhang
    • , Christine A Wells
    • , Kim M Summers
    • , Hideya Kawaji
    • , Albin Sandelin
    • , Michael Rehli
    • , Yoshihide Hayashizaki
    • , Piero Carninci
    • , Alistair R R Forrest
    •  & Michiel J L de Hoon

    Nature Biotechnology (2017)

  • Novel equine tissue miRNAs and breed-related miRNA expressed in serum

    • Alicja Pacholewska
    • , Núria Mach
    • , Xavier Mata
    • , Anne Vaiman
    • , Laurent Schibler
    • , Eric Barrey
    •  & Vincent Gerber

    BMC Genomics (2016)