Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phospholipid-dependent regulation of the motor activity of myosin X

Abstract

Myosin X is involved in the reorganization of the actin cytoskeleton and protrusion of filopodia. Here we studied the molecular mechanism by which bovine myosin X is regulated. The globular tail domain inhibited the motor activity of myosin X in a Ca2+-independent manner. Structural analysis revealed that myosin X is monomeric and that the band 4.1-ezrin-radixin-moesin (FERM) and pleckstrin homology (PH) domains bind to the head intramolecularly, forming an inhibited conformation. Binding of phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P3) to the PH domain reversed the tail-induced inhibition and induced the formation of myosin X dimers. Consistently, disruption of the binding of PtdIns(3,4,5)P3 attenuated the translocation of myosin X to filopodial tips in cells. We propose the following mechanism: first, the tail inhibits the motor activity of myosin X by intramolecular head-tail interactions to form the folded conformation; second, phospholipid binding reverses the inhibition and disrupts the folded conformation, which induces dimer formation, thereby activating the mechanical and cargo transporter activity of myosin X.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of myosin X constructs used in this study.
Figure 2: The actin-activated ATPase activity of M10full and M10ΔGTD.
Figure 3: Electron microscopy analysis of myosin X constructs.
Figure 4: Binding of PtdIns(3,4,5)P3 to myosin X abolishes the tail-induced inhibition of the actin-activated ATPase activity of myosin X.
Figure 5: Activation of the actin-gliding velocity of M10full by PtdIns(3,4,5)P3.
Figure 6: Induction of myosin X dimer formation by PtdIns(3,4,5)P3 measured by cross-linking.
Figure 7: Phospholipid binding is crucial for the filopodial tip localization of myosin X.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Berg, J.S., Derfler, B.H., Pennisi, C.M., Corey, D.P. & Cheney, R.E. Myosin-X, a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin. J. Cell Sci. 113, 3439–3451 (2000).

    CAS  Google Scholar 

  2. Knight, P.J. et al. The predicted coiled-coil domain of myosin 10 forms a novel elongated domain that lengthens the head. J. Biol. Chem. 280, 34702–34708 (2005).

    Article  CAS  Google Scholar 

  3. Tokuo, H. & Ikebe, M. Myosin X transports Mena/VASP to the tip of filopodia. Biochem. Biophys. Res. Commun. 319, 214–220 (2004).

    Article  CAS  Google Scholar 

  4. Zhang, H. et al. Myosin-X provides a motor-based link between integrins and the cytoskeleton. Nat. Cell Biol. 6, 523–531 (2004).

    Article  Google Scholar 

  5. Weber, K.L., Sokac, A.M., Berg, J.S., Cheney, R.E. & Bement, W.M. A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 431, 325–329 (2004).

    Article  CAS  Google Scholar 

  6. Homma, K., Saito, J., Ikebe, R. & Ikebe, M. Motor function and regulation of myosin X. J. Biol. Chem. 276, 34348–34354 (2001).

    Article  CAS  Google Scholar 

  7. Homma, K. & Ikebe, M. Myosin X is a high duty ratio motor. J. Biol. Chem. 280, 29381–29391 (2005).

    Article  CAS  Google Scholar 

  8. Ikebe, M. Regulation of the function of mammalian myosin and its conformational change. Biochem. Biophys. Res. Commun. 369, 157–164 (2008).

    Article  CAS  Google Scholar 

  9. Kolomeisky, A.B. & Fisher, M.E. Molecular motors: a theorist's perspective. Annu. Rev. Phys. Chem. 58, 675–695 (2007).

    Article  CAS  Google Scholar 

  10. Sun, Y. et al. Single-molecule stepping and structural dynamics of myosin X. Nat. Struct. Mol. Biol. 17, 485–491 (2010).

    Article  CAS  Google Scholar 

  11. Kerber, M.L. et al. A novel form of motility in filopodia revealed by imaging myosin-X at the single-molecule level. Curr. Biol. 19, 967–973 (2009).

    Article  CAS  Google Scholar 

  12. Watanabe, T.M., Tokuo, H., Gonda, K., Higuchi, H. & Ikebe, M. Myosin-X induces filopodia by multiple elongation mechanism. J. Biol. Chem. 285, 19605–19614 (2010).

    Article  CAS  Google Scholar 

  13. Berg, J.S. & Cheney, R.E. Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nat. Cell Biol. 4, 246–250 (2002).

    Article  CAS  Google Scholar 

  14. Sousa, A.D., Berg, J.S., Robertson, B.W., Meeker, R.B. & Cheney, R.E. Myo10 in brain: developmental regulation, identification of a headless isoform and dynamics in neurons. J. Cell Sci. 119, 184–194 (2006).

    Article  CAS  Google Scholar 

  15. Li, X.D., Jung, H.S., Mabuchi, K., Craig, R. & Ikebe, M. The globular tail domain of myosin Va functions as an inhibitor of the myosin Va motor. J. Biol. Chem. 281, 21789–21798 (2006).

    Article  CAS  Google Scholar 

  16. Umeki, N. et al. The tail binds to the head-neck domain, inhibiting ATPase activity of myosin VIIA. Proc. Natl. Acad. Sci. USA 106, 8483–8488 (2009).

    Article  CAS  Google Scholar 

  17. Wang, F. et al. Regulated conformation of myosin V. J. Biol. Chem. 279, 2333–2336 (2004).

    Article  CAS  Google Scholar 

  18. Li, X.D., Mabuchi, K., Ikebe, R. & Ikebe, M. Ca2+-induced activation of ATPase activity of myosin Va is accompanied with a large conformational change. Biochem. Biophys. Res. Commun. 315, 538–545 (2004).

    Article  CAS  Google Scholar 

  19. Li, X.D. et al. The globular tail domain puts on the brake to stop the ATPase cycle of myosin Va. Proc. Natl. Acad. Sci. USA 105, 1140–1145 (2008).

    Article  CAS  Google Scholar 

  20. Krementsov, D.N., Krementsova, E.B. & Trybus, K.M. Myosin V: regulation by calcium, calmodulin, and the tail domain. J. Cell Biol. 164, 877–886 (2004).

    Article  CAS  Google Scholar 

  21. Levental, I. et al. Calcium-dependent lateral organization in phosphatidylinositol 4,5-bisphosphate (PIP2)- and cholesterol-containing monolayers. Biochemistry 48, 8241–8248 (2009).

    Article  CAS  Google Scholar 

  22. Homma, K., Yoshimura, M., Saito, J., Ikebe, R. & Ikebe, M. The core of the motor domain determines the direction of myosin movement. Nature 412, 831–834 (2001).

    Article  CAS  Google Scholar 

  23. Nagy, S. et al. A myosin motor that selects bundled actin for motility. Proc. Natl. Acad. Sci. USA 105, 9616–9620 (2008).

    Article  CAS  Google Scholar 

  24. Yang, Y. et al. A FERM domain autoregulates Drosophila myosin 7a activity. Proc. Natl. Acad. Sci. USA 106, 4189–4194 (2009).

    Article  CAS  Google Scholar 

  25. Tokuo, H., Mabuchi, K. & Ikebe, M. The motor activity of myosin-X promotes actin fiber convergence at the cell periphery to initiate filopodia formation. J. Cell Biol. 179, 229–238 (2007).

    Article  CAS  Google Scholar 

  26. Sasaki, A.T., Chun, C., Takeda, K. & Firtel, R.A. Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. J. Cell Biol. 167, 505–518 (2004).

    Article  CAS  Google Scholar 

  27. Reynard, A.M., Hass, L.F., Jacobsen, D.D. & Boyer, P.D. The correlation of reaction kinetics and substrate binding with the mechanism of pyruvate kinase. J. Biol. Chem. 236, 2277–2283 (1961).

    CAS  PubMed  Google Scholar 

  28. Spudich, G. et al. Myosin VI targeting to clathrin-coated structures and dimerization is mediated by binding to Disabled-2 and PtdIns(4,5)P2. Nat. Cell Biol. 9, 176–183 (2007).

    Article  CAS  Google Scholar 

  29. Jung, H.S., Komatsu, S., Ikebe, M. & Craig, R. Head-head and head-tail interaction: a general mechanism for switching off myosin II activity in cells. Mol. Biol. Cell 19, 3234–3242 (2008).

    Article  CAS  Google Scholar 

  30. Burgess, S.A., Walker, M.L., Thirumurugan, K., Trinick, J. & Knight, P.J. Use of negative stain and single-particle image processing to explore dynamic properties of flexible macromolecules. J. Struct. Biol. 147, 247–258 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Fenton (University of Massachusetts) for reading the manuscript and K. Homma for the parent construct of myosin X. This work was supported by US National Institutes of Health (NIH) grants DC006103, AR048526, AR048898 and HL073050 to M.I. and Korea Basic Science Institute grant T31760 to H.S.J.

Author information

Authors and Affiliations

Authors

Contributions

N.U. performed the ATPase assays of myosin X constructs, cross-linking assay and prepared myosin X proteins for EM experiments. H.S.J. performed EM image analysis and wrote the EM part of the paper. T.S. performed lipid binding assay, cross-linking, cell imaging, measurement of the activity of PH domain mutants and production of some myosin X constructs. O.S. performed the actin gliding assay of myosin X. R.I. prepared myosin X expression constructs. M.I. supervised the whole project and wrote the paper.

Corresponding author

Correspondence to Mitsuo Ikebe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Methods (PDF 5877 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umeki, N., Jung, H., Sakai, T. et al. Phospholipid-dependent regulation of the motor activity of myosin X. Nat Struct Mol Biol 18, 783–788 (2011). https://doi.org/10.1038/nsmb.2065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2065

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing