Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dominant prion mutants induce curing through pathways that promote chaperone-mediated disaggregation

Abstract

Protein misfolding underlies many neurodegenerative diseases, including the transmissible spongiform encephalopathies (prion diseases). Although cells typically recognize and process misfolded proteins, prion proteins evade protective measures by forming stable, self-replicating aggregates. However, coexpression of dominant-negative prion mutants can overcome aggregate accumulation and disease progression through currently unknown pathways. Here we determine the mechanisms by which two mutants of the Saccharomyces cerevisiae Sup35 protein cure the [PSI+] prion. We show that both mutants incorporate into wild-type aggregates and alter their physical properties in different ways, diminishing either their assembly rate or their thermodynamic stability. Whereas wild-type aggregates are recalcitrant to cellular intervention, mixed aggregates are disassembled by the molecular chaperone Hsp104. Thus, rather than simply blocking misfolding, dominant-negative prion mutants target multiple events in aggregate biogenesis to enhance their susceptibility to endogenous quality-control pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PNM mutants are distinguished by their effective inhibitory ratios.
Figure 2: PNM mutants incorporate into wild-type aggregates and alter multiple events in prion propagation.
Figure 3: PNM mutants alter the accumulation of propagons but not their transmission.
Figure 4: PNM expression promotes Hsp104-mediated disassembly of aggregates.

Similar content being viewed by others

References

  1. Tuite, M.F. & Serio, T.R. The prion hypothesis: from biological anomaly to basic regulatory mechanism. Nat. Rev. Mol. Cell Biol. 11, 823–833 (2010).

    Article  CAS  Google Scholar 

  2. Masel, J., Jansen, V.A. & Nowak, M.A. Quantifying the kinetic parameters of prion replication. Biophys. Chem. 77, 139–152 (1999).

    Article  CAS  Google Scholar 

  3. Collinge, J. et al. Kuru in the 21st century—an acquired human prion disease with very long incubation periods. Lancet 367, 2068–2074 (2006).

    Article  Google Scholar 

  4. Gambetti, P., Parchi, P., Petersen, R.B., Chen, S.G. & Lugaresi, E. Fatal familial insomnia and familial Creutzfeldt-Jakob disease: clinical, pathological and molecular features. Brain Pathol. 5, 43–51 (1995).

    Article  CAS  Google Scholar 

  5. Webb, T.E. et al. Phenotypic heterogeneity and genetic modification of P102L inherited prion disease in an international series. Brain 131, 2632–2646 (2008).

    Article  CAS  Google Scholar 

  6. Deslys, J.P. et al. Genotype at codon 129 and susceptibility to Creutzfeldt-Jakob disease. Lancet 351, 1251 (1998).

    Article  CAS  Google Scholar 

  7. Cervenakova, L. et al. Phenotype-genotype studies in kuru: implications for new variant Creutzfeldt-Jakob disease. Proc. Natl. Acad. Sci. USA 95, 13239–13241 (1998).

    Article  CAS  Google Scholar 

  8. Huillard d'Aignaux, J. et al. Incubation period of Creutzfeldt-Jakob disease in human growth hormone recipients in France. Neurology 53, 1197–1201 (1999).

    Article  CAS  Google Scholar 

  9. Baker, H.E. et al. Amino acid polymorphism in human prion protein and age at death in inherited prion disease. Lancet 337, 1286 (1991).

    Article  CAS  Google Scholar 

  10. Dickinson, A.G., Meikle, V.M. & Fraser, H. Identification of a gene which controls the incubation period of some strains of scrapie agent in mice. J. Comp. Pathol. 78, 293–299 (1968).

    Article  CAS  Google Scholar 

  11. Carlson, G.A. et al. Genetics and polymorphism of the mouse prion gene complex: control of scrapie incubation time. Mol. Cell. Biol. 8, 5528–5540 (1988).

    Article  CAS  Google Scholar 

  12. Shibuya, S., Higuchi, J., Shin, R.W., Tateishi, J. & Kitamoto, T. Codon 219 Lys allele of PRNP is not found in sporadic Creutzfeldt-Jakob disease. Ann. Neurol. 43, 826–828 (1998).

    Article  CAS  Google Scholar 

  13. Goldmann, W., Hunter, N., Smith, G., Foster, J. & Hope, J. PrP genotype and agent effects in scrapie: change in allelic interaction with different isolates of agent in sheep, a natural host of scrapie. J. Gen. Virol. 75, 989–995 (1994).

    Article  CAS  Google Scholar 

  14. Westaway, D. et al. Homozygosity for prion protein alleles encoding glutamine-171 renders sheep susceptible to natural scrapie. Genes Dev. 8, 959–969 (1994).

    Article  CAS  Google Scholar 

  15. Belt, P.B. et al. Identification of five allelic variants of the sheep PrP gene and their association with natural scrapie. J. Gen. Virol. 76, 509–517 (1995).

    Article  CAS  Google Scholar 

  16. Clouscard, C. et al. Different allelic effects of the codons 136 and 171 of the prion protein gene in sheep with natural scrapie. J. Gen. Virol. 76, 2097–2101 (1995).

    Article  CAS  Google Scholar 

  17. Ikeda, T. et al. Amino acid polymorphisms of PrP with reference to onset of scrapie in Suffolk and Corriedale sheep in Japan. J. Gen. Virol. 76, 2577–2581 (1995).

    Article  CAS  Google Scholar 

  18. Bossers, A., Schreuder, B.E., Muileman, I.H., Belt, P.B. & Smits, M.A. PrP genotype contributes to determining survival times of sheep with natural scrapie. J. Gen. Virol. 77, 2669–2673 (1996).

    Article  CAS  Google Scholar 

  19. Hunter, N., Moore, L., Hosie, B.D., Dingwall, W.S. & Greig, A. Association between natural scrapie and PrP genotype in a flock of Suffolk sheep in Scotland. Vet. Rec. 140, 59–63 (1997).

    Article  CAS  Google Scholar 

  20. O'Rourke, K.I. et al. PrP genotypes and experimental scrapie in orally inoculated Suffolk sheep in the United States. J. Gen. Virol. 78, 975–978 (1997).

    Article  CAS  Google Scholar 

  21. Baylis, M. et al. Scrapie epidemic in a fully PrP-genotyped sheep flock. J. Gen. Virol. 83, 2907–2914 (2002).

    Article  CAS  Google Scholar 

  22. Kaneko, K. et al. Evidence for protein X binding to a discontinuous epitope on the cellular prion protein during scrapie prion propagation. Proc. Natl. Acad. Sci. USA 94, 10069–10074 (1997).

    Article  CAS  Google Scholar 

  23. Perrier, V. et al. Dominant-negative inhibition of prion replication in transgenic mice. Proc. Natl. Acad. Sci. USA 99, 13079–13084 (2002).

    Article  CAS  Google Scholar 

  24. Crozet, C. et al. Inhibition of PrPSc formation by lentiviral gene transfer of PrP containing dominant negative mutants. J. Cell Sci. 117, 5591–5597 (2004).

    Article  CAS  Google Scholar 

  25. Furuya, K. et al. Intracerebroventricular delivery of dominant negative prion protein in a mouse model of iatrogenic Creutzfeldt-Jakob disease after dura graft transplantation. Neurosci. Lett. 402, 222–226 (2006).

    Article  CAS  Google Scholar 

  26. Toupet, K. et al. Effective gene therapy in a mouse model of prion diseases. PLoS ONE 3, e2773 (2008).

    Article  Google Scholar 

  27. Geoghegan, J.C., Miller, M.B., Kwak, A.H., Harris, B.T. & Supattapone, S. Trans-dominant inhibition of prion propagation in vitro is not mediated by an accessory cofactor. PLoS Pathog. 5, e1000535 (2009).

    Article  Google Scholar 

  28. Atarashi, R., Sim, V.L., Nishida, N., Caughey, B. & Katamine, S. Prion strain-dependent differences in conversion of mutant prion proteins in cell culture. J. Virol. 80, 7854–7862 (2006).

    Article  CAS  Google Scholar 

  29. Lee, C.I., Yang, Q., Perrier, V. & Baskakov, I.V. The dominant-negative effect of the Q218K variant of the prion protein does not require protein X. Protein Sci. 16, 2166–2173 (2007).

    Article  CAS  Google Scholar 

  30. Masel, J. & Jansen, V.A. Designing drugs to stop the formation of prion aggregates and other amyloids. Biophys. Chem. 88, 47–59 (2000).

    Article  CAS  Google Scholar 

  31. Satpute-Krishnan, P. & Serio, T.R. Prion protein remodelling confers an immediate phenotypic switch. Nature 437, 262–265 (2005).

    Article  CAS  Google Scholar 

  32. Satpute-Krishnan, P., Langseth, S.X. & Serio, T.R. Hsp104-dependent remodeling of prion complexes mediates protein-only inheritance. PLoS Biol. 5, e24 (2007).

    Article  Google Scholar 

  33. Ness, F., Ferreira, P., Cox, B.S. & Tuite, M.F. Guanidine hydrochloride inhibits the generation of prion “seeds” but not prion protein aggregation in yeast. Mol. Cell. Biol. 22, 5593–5605 (2002).

    Article  CAS  Google Scholar 

  34. Kawai-Noma, S., Pack, C.G., Tsuji, T., Kinjo, M. & Taguchi, H. Single mother-daughter pair analysis to clarify the diffusion properties of yeast prion Sup35 in guanidine-HCl-treated [PSI] cells. Genes Cells 14, 1045–1054 (2009).

    Article  CAS  Google Scholar 

  35. Chernoff, Y.O., Lindquist, S.L., Ono, B., Inge-Vechtomov, S.G. & Liebman, S.W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+]. Science 268, 880–884 (1995).

    Article  CAS  Google Scholar 

  36. Tipton, K.A., Verges, K.J. & Weissman, J.S. In vivo monitoring of the prion replication cycle reveals a critical role for Sis1 in delivering substrates to Hsp104. Mol. Cell 32, 584–591 (2008).

    Article  CAS  Google Scholar 

  37. Higurashi, T., Hines, J.K., Sahi, C., Aron, R. & Craig, E.A. Specificity of the J-protein Sis1 in the propagation of 3 yeast prions. Proc. Natl. Acad. Sci. USA 105, 16596–16601 (2008).

    Article  CAS  Google Scholar 

  38. Tessarz, P., Mogk, A. & Bukau, B. Substrate threading through the central pore of the Hsp104 chaperone as a common mechanism for protein disaggregation and prion propagation. Mol. Microbiol. 68, 87–97 (2008).

    Article  CAS  Google Scholar 

  39. DePace, A.H., Santoso, A., Hillner, P. & Weissman, J.S. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93, 1241–1252 (1998).

    Article  CAS  Google Scholar 

  40. Doel, S.M., McCready, S.J., Nierras, C.R. & Cox, B.S. The dominant PNM2-mutation which eliminates the psi factor of Saccharomyces cerevisiae is the result of a missense mutation in the gene. Genetics 137, 659–670 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Young, C.S.H. & Cox, B.S. Extrachromosomal elements in a super-suppression system of yeast. I. A nuclear gene controlling the inheritance of the extrachromosomal elements. Heredity 26, 413–422 (1971).

    Article  Google Scholar 

  42. Derkatch, I.L., Bradley, M.E., Zhou, P. & Liebman, S.W. The PNM2 mutation in the prion protein domain of SUP35 has distinct effects on different variants of the [PSI+] prion in yeast. Curr. Genet. 35, 59–67 (1999).

    Article  CAS  Google Scholar 

  43. Kochneva-Pervukhova, N.V. et al. Mechanism of inhibition of [PSI+] prion determinant propagation by a mutation of the N-terminus of the yeast Sup35 protein. EMBO J. 17, 5805–5810 (1998).

    Article  CAS  Google Scholar 

  44. Osherovich, L.Z., Cox, B.S., Tuite, M.F. & Weissman, J.S. Dissection and design of yeast prions. PLoS Biol. 2, E86 (2004).

    Article  Google Scholar 

  45. Tanaka, M., Collins, S.R., Toyama, B.H. & Weissman, J.S. The physical basis of how prion conformations determine strain phenotypes. Nature 442, 585–589 (2006).

    Article  CAS  Google Scholar 

  46. Derdowski, A., Sindi, S.S., Klaips, C.L., DiSalvo, S. & Serio, T.R. A size threshold limits prion transmission and establishes phenotypic diversity. Science 330, 680–683 (2010).

    Article  CAS  Google Scholar 

  47. Kryndushkin, D.S., Alexandrov, I.M., Ter-Avanesyan, M.D. & Kushnirov, V.V. Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J. Biol. Chem. 278, 49636–49643 (2003).

    Article  CAS  Google Scholar 

  48. Cox, B., Ness, F. & Tuite, M. Analysis of the generation and segregation of propagons: entities that propagate the [PSI+] prion in yeast. Genetics 165, 23–33 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tessier, P.M. & Lindquist, S. Prion recognition elements govern nucleation, strain specificity and species barriers. Nature 447, 556–561 (2007).

    Article  CAS  Google Scholar 

  50. Krishnan, R. & Lindquist, S.L. Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 435, 765–772 (2005).

    Article  CAS  Google Scholar 

  51. Toyama, B.H., Kelly, M.J., Gross, J.D. & Weissman, J.S. The structural basis of yeast prion strain variants. Nature 449, 233–237 (2007).

    Article  CAS  Google Scholar 

  52. Santoso, A., Chien, P., Osherovich, L.Z. & Weissman, J.S. Molecular basis of a yeast prion species barrier. Cell 100, 277–288 (2000).

    Article  CAS  Google Scholar 

  53. Moosavi, B., Wongwigkarn, J. & Tuite, M.F. Hsp70/Hsp90 co-chaperones are required for efficient Hsp104-mediated elimination of the yeast [PSI+] prion but not for prion propagation. Yeast 27, 167–179 (2010).

    CAS  PubMed  Google Scholar 

  54. Reidy, M. & Masison, D.C. Sti1 regulation of Hsp70 and Hsp90 is critical for curing of Saccharomyces cerevisiae [PSI+] prions by Hsp104. Mol. Cell. Biol. 30, 3542–3552 (2010).

    Article  CAS  Google Scholar 

  55. Bossers, A. et al. Scrapie susceptibility-linked polymorphisms modulate the in vitro conversion of sheep prion protein to protease-resistant forms. Proc. Natl. Acad. Sci. USA 94, 4931–4936 (1997).

    Article  CAS  Google Scholar 

  56. Hizume, M. et al. Human prion protein (PrP) 219K is converted to PrPSc but shows heterozygous inhibition in variant Creutzfeldt-Jakob disease infection. J. Biol. Chem. 284, 3603–3609 (2009).

    Article  CAS  Google Scholar 

  57. Safar, J. et al. Eight prion strains have PrP(Sc) molecules with different conformations. Nat. Med. 4, 1157–1165 (1998).

    Article  CAS  Google Scholar 

  58. Belli, G., Gari, E., Aldea, M. & Herrero, E. Functional analysis of yeast essential genes using a promoter-substitution cassette and the tetracycline-regulatable dual expression system. Yeast 14, 1127–1138 (1998).

    Article  CAS  Google Scholar 

  59. Pezza, J.A. et al. The NatA acetyltransferase couples Sup35 prion complexes to the [PSI+] phenotype. Mol. Biol. Cell 20, 1068–1080 (2009).

    Article  CAS  Google Scholar 

  60. Bagriantsev, S.N., Gracheva, E.O., Richmond, J.E. & Liebman, S.W. Variant-specific [PSI+] infection is transmitted by Sup35 polymers within [PSI+] aggregates with heterogeneous protein composition. Mol. Biol. Cell 19, 2433–2443 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Bender, J. Laney, B. Cox, M. Tuite and members of the Serio, Laney and Tuite labs for helpful discussions and comments on the manuscript, and S. Lindquist (Whitehead Institute), D. Stillman (The University of Utah), M. Tuite (University of Kent), E. Craig (University of Wisconsin–Madison), J. Weissman (University of California, San Francisco) and J. Laney (Brown University) for reagents. We also thank C. Klaips and B. Rock for technical assistance. This research was supported by grants from the National Institutes of Health (AG032818 to S.D., GM085976 to A.D., GM080907 to J.A.P. and GM069802 to T.R.S.).

Author information

Authors and Affiliations

Authors

Contributions

S.D. and T.R.S. designed the experiments, analyzed the data and wrote the manuscript. S.D., A.D. and J.A.P. performed the experiments.

Corresponding author

Correspondence to Tricia R Serio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–3 (PDF 5622 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiSalvo, S., Derdowski, A., Pezza, J. et al. Dominant prion mutants induce curing through pathways that promote chaperone-mediated disaggregation. Nat Struct Mol Biol 18, 486–492 (2011). https://doi.org/10.1038/nsmb.2031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2031

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing