Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure-function analysis of hRPC62 provides insights into RNA polymerase III transcription initiation

A Corrigendum to this article was published on 06 April 2011

This article has been updated

Abstract

The 17-subunit human RNA polymerase III (hPol III) transcribes small, untranslated RNA genes that are involved in the regulation of transcription, splicing and translation. hPol III subunits hRPC62, hRPC39 and hRPC32 form a stable ternary subcomplex required for promoter-specific transcription initiation by hPol III. Here, we report the crystal structure of hRPC62. This subunit folds as a four-tandem extended winged helix (eWH) protein that is structurally related to the transcription factor TFIIEα N terminus. Through biochemical analyses, we mapped the protein-protein interactions of hRPC62, hRPC32 and hRPC39. In addition, we demonstrated that hRPC62 and hRPC39 bind single-stranded and duplex DNA, respectively, in a sequence-independent manner. Overall, we shed light on structural similarities between the hPol III–specific subunit hRPC62 and TFIIEα and propose specific functions for hRPC39 and hRPC62 in transcription initiation by hPol III.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of hRPC62.
Figure 2: Interaction mapping of the two isoforms of hRPC32 with hRPC62.
Figure 3: Mutual-interaction mapping of hRPC39 and hRPC62.
Figure 4: DNA-binding properties of hRPC62.
Figure 5: DNA-binding properties of hRPC39.
Figure 6: hRPC62 (Rpc82) positioning into the yeast RNA Pol III electron-density map.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

Change history

  • 17 March 2011

    In the version of this article initially published, reference 20 was not cited in the main text. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Cramer, P. et al. Structure of eukaryotic RNA polymerases. Annu. Rev. Biophys. 37, 337–352 (2008).

    Article  CAS  Google Scholar 

  2. Buratowski, S., Hahn, S., Guarente, L. & Sharp, P.A. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56, 549–561 (1989).

    Article  CAS  Google Scholar 

  3. Esnault, C. et al. Mediator-dependent recruitment of TFIIH modules in preinitiation complex. Mol. Cell 31, 337–346 (2008).

    Article  CAS  Google Scholar 

  4. Holstege, F.C., van der Vliet, P.C. & Timmers, H.T. Opening of an RNA polymerase II promoter occurs in two distinct steps and requires the basal transcription factors IIE and IIH. EMBO J. 15, 1666–1677 (1996).

    Article  CAS  Google Scholar 

  5. Dieci, G., Fiorino, G., Castelnuovo, M., Teichmann, M. & Pagano, A. The expanding RNA polymerase III transcriptome. Trends Genet. 23, 614–622 (2007).

    Article  CAS  Google Scholar 

  6. Dumay-Odelot, H., Durrieu-Gaillard, S., Da Silva, D., Roeder, R.G. & Teichmann, M. Cell growth- and differentiation-dependent regulation of RNA polymerase III transcription. Cell Cycle 9, 3687–3699 (2010).

    Article  CAS  Google Scholar 

  7. Kassavetis, G.A., Blanco, J.A., Johnson, T.E. & Geiduschek, E.P. Formation of open and elongating transcription complexes by RNA polymerase III. J. Mol. Biol. 226, 47–58 (1992).

    Article  CAS  Google Scholar 

  8. Kassavetis, G.A., Braun, B.R., Nguyen, L.H. & Geiduschek, E.P. S. cerevisiae TFIIIB is the transcription initiation factor proper of RNA polymerase III, while TFIIIA and TFIIIC are assembly factors. Cell 60, 235–245 (1990).

    Article  CAS  Google Scholar 

  9. Brun, I., Sentenac, A. & Werner, M. Dual role of the C34 subunit of RNA polymerase III in transcription initiation. EMBO J. 16, 5730–5741 (1997).

    Article  CAS  Google Scholar 

  10. Chaussivert, N., Conesa, C., Shaaban, S. & Sentenac, A. Complex interactions between yeast TFIIIB and TFIIIC. J. Biol. Chem. 270, 15353–15358 (1995).

    Article  CAS  Google Scholar 

  11. Dumay, H., Rubbi, L., Sentenac, A. & Marck, C. Interaction between yeast RNA polymerase III and transcription factor TFIIIC via ABC10alpha and tau131 subunits. J. Biol. Chem. 274, 33462–33468 (1999).

    Article  CAS  Google Scholar 

  12. Flores, A. et al. A protein-protein interaction map of yeast RNA polymerase III. Proc. Natl. Acad. Sci. USA 96, 7815–7820 (1999).

    Article  CAS  Google Scholar 

  13. Huet, J., Conesa, C., Manaud, N., Chaussivert, N. & Sentenac, A. Interactions between yeast TFIIIB components. Nucleic Acids Res. 22, 2282–2288 (1994).

    Article  CAS  Google Scholar 

  14. Werner, M., Chaussivert, N., Willis, I.M. & Sentenac, A. Interaction between a complex of RNA polymerase III subunits and the 70-kDa component of transcription factor IIIB. J. Biol. Chem. 268, 20721–20724 (1993).

    CAS  PubMed  Google Scholar 

  15. Valenzuela, P., Hager, G.L., Weinberg, F. & Rutter, W.J. Molecular structure of yeast RNA polymerase III: demonstration of the tripartite transcriptive system in lower eukaryotes. Proc. Natl. Acad. Sci. USA 73, 1024–1028 (1976).

    Article  CAS  Google Scholar 

  16. Wang, Z. & Roeder, R.G. Three human RNA polymerase III-specific subunits form a subcomplex with a selective function in specific transcription initiation. Genes Dev. 11, 1315–1326 (1997).

    Article  CAS  Google Scholar 

  17. Thuillier, V., Stettler, S., Sentenac, A., Thuriaux, P. & Werner, M. A mutation in the C31 subunit of Saccharomyces cerevisiae RNA polymerase III affects transcription initiation. EMBO J. 14, 351–359 (1995).

    Article  CAS  Google Scholar 

  18. Haurie, V. et al. Two isoforms of human RNA polymerase III with specific functions in cell growth and transformation. Proc. Natl. Acad. Sci. USA 107, 4176–4181 (2010).

    Article  CAS  Google Scholar 

  19. Hsieh, Y.J., Wang, Z., Kovelman, R., Roeder, R.G. & Cloning and characterization of two evolutionarily conserved subunits (TFIIIC102 and TFIIIC63) of human TFIIIC and their involvement in functional interactions with TFIIIB and RNA polymerase III. Mol. Cell Biol. 19, 4944–4952 (1999).

    Article  CAS  Google Scholar 

  20. Kenneth, N.S., Marshall, L. & White, R.J. Recruitment of RNA polymerase III in vivo. Nucleic Acids Res. 36, 3757–3764 (2008).

    Article  CAS  Google Scholar 

  21. Meinhart, A., Blobel, J. & Cramer, P. An extended winged helix domain in general transcription factor E/IIE alpha. J. Biol. Chem. 278, 48267–48274 (2003).

    Article  CAS  Google Scholar 

  22. Bartholomew, B., Durkovich, D., Kassavetis, G.A. & Geiduschek, E.P. Orientation and topography of RNA polymerase III in transcription complexes. Mol. Cell. Biol. 13, 942–952 (1993).

    Article  CAS  Google Scholar 

  23. Persinger, J. & Bartholomew, B. Mapping the contacts of yeast TFIIIB and RNA polymerase III at various distances from the major groove of DNA by DNA photoaffinity labeling. J. Biol. Chem. 271, 33039–33046 (1996).

    Article  CAS  Google Scholar 

  24. Schneider, H.R., Waldschmidt, R., Jahn, D. & Seifart, K.H. Purification of human transcription factor IIIC and its binding to the gene for ribosomal 5S RNA. Nucleic Acids Res. 17, 5003–5016 (1989).

    Article  CAS  Google Scholar 

  25. Gajiwala, K.S. & Burley, S.K. Winged helix proteins. Curr. Opin. Struct. Biol. 10, 110–116 (2000).

    Article  CAS  Google Scholar 

  26. Cramer, P., Bushnell, D.A. & Kornberg, R.D. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292, 1863–1876 (2001).

    Article  CAS  Google Scholar 

  27. Kostrewa, D. et al. RNA polymerase II-TFIIB structure and mechanism of transcription initiation. Nature 462, 323–330 (2009).

    Article  CAS  Google Scholar 

  28. Fernández-Tornero, C. et al. Insights into transcription initiation and termination from the electron microscopy structure of yeast RNA polymerase III. Mol. Cell 25, 813–823 (2007).

    Article  Google Scholar 

  29. Kuhn, C.D. et al. Functional architecture of RNA polymerase I. Cell 131, 1260–1272 (2007).

    Article  CAS  Google Scholar 

  30. Jasiak, A.J., Armache, K.J., Martens, B., Jansen, R.P. & Cramer, P. Structural biology of RNA polymerase III: subcomplex C17/25 X-ray structure and 11 subunit enzyme model. Mol. Cell 23, 71–81 (2006).

    Article  CAS  Google Scholar 

  31. Vannini, A. et al. Molecular basis of RNA polymerase III transcription repression by Maf1. Cell 143, 59–70 (2010).

    Article  CAS  Google Scholar 

  32. Ferri, M.L. et al. A novel subunit of yeast RNA polymerase III interacts with the TFIIB-related domain of TFIIIB70. Mol. Cell. Biol. 20, 488–495 (2000).

    Article  CAS  Google Scholar 

  33. Lorenzen, K., Vannini, A., Cramer, P. & Heck, A.J. Structural biology of RNA polymerase III: mass spectrometry elucidates subcomplex architecture. Structure 15, 1237–1245 (2007).

    Article  CAS  Google Scholar 

  34. Kassavetis, G.A., Han, S., Naji, S. & Geiduschek, E.P. The role of transcription initiation factor IIIB subunits in promoter opening probed by photochemical cross-linking. J. Biol. Chem. 278, 17912–17917 (2003).

    Article  CAS  Google Scholar 

  35. Koleske, A.J. & Young, R.A. An RNA polymerase II holoenzyme responsive to activators. Nature 368, 466–469 (1994).

    Article  CAS  Google Scholar 

  36. Geiger, S.R. et al. RNA Polymerase I contains a TFIIF-related DNA-binding subcomplex. Mol. Cell 39, 583–594 (2010).

    Article  CAS  Google Scholar 

  37. Drygin, D., Rice, W.G. & Grummt, I. The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu. Rev. Pharmacol. Toxicol. 50, 131–156 (2010).

    Article  CAS  Google Scholar 

  38. Ablasser, A. et al. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat. Immunol. 10, 1065–1072 (2009).

    Article  CAS  Google Scholar 

  39. Soding, J., Biegert, A. & Lupas, A.N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–248 (2005).

    Article  Google Scholar 

  40. Leuther, K.K., Bushnell, D.A. & Kornberg, R.D. Two-dimensional crystallography of TFIIB- and IIE-RNA polymerase II complexes: implications for start site selection and initiation complex formation. Cell 85, 773–779 (1996).

    Article  CAS  Google Scholar 

  41. Di Lello, P. et al. p53 and TFIIEalpha share a common binding site on the Tfb1/p62 subunit of TFIIH. Proc. Natl. Acad. Sci. USA 105, 106–111 (2008).

    Article  CAS  Google Scholar 

  42. Okuda, M. et al. Structural insight into the TFIIE-TFIIH interaction: TFIIE and p53 share the binding region on TFIIH. EMBO J. 27, 1161–1171 (2008).

    Article  CAS  Google Scholar 

  43. Okamoto, T. et al. Analysis of the role of TFIIE in transcriptional regulation through structure-function studies of the TFIIEbeta subunit. J. Biol. Chem. 273, 19866–19876 (1998).

    Article  CAS  Google Scholar 

  44. Okuda, M. et al. Structure of the central core domain of TFIIEbeta with a novel double-stranded DNA-binding surface. EMBO J. 19, 1346–1356 (2000).

    Article  CAS  Google Scholar 

  45. Robert, F., Forget, D., Li, J., Greenblatt, J. & Coulombe, B. Localization of subunits of transcription factors IIE and IIF immediately upstream of the transcriptional initiation site of the adenovirus major late promoter. J. Biol. Chem. 271, 8517–8520 (1996).

    Article  CAS  Google Scholar 

  46. Tanaka, A., Watanabe, T., Iida, Y., Hanaoka, F. & Ohkuma, Y. Central forkhead domain of human TFIIE beta plays a primary role in binding double-stranded DNA at transcription initiation. Genes Cells 14, 395–405 (2009).

    Article  CAS  Google Scholar 

  47. Maxon, M.E., Goodrich, J.A. & Tjian, R. Transcription factor IIE binds preferentially to RNA polymerase IIa and recruits TFIIH: a model for promoter clearance. Genes Dev. 8, 515–524 (1994).

    Article  CAS  Google Scholar 

  48. Carter, R. & Drouin, G. The increase in the number of subunits in eukaryotic RNA polymerase III relative to RNA polymerase II is due to the permanent recruitment of general transcription factors. Mol. Biol. Evol. 27, 1035–1043 (2010).

    Article  CAS  Google Scholar 

  49. Gao, X. & Lynch, M. Ubiquitous internal gene duplication and intron creation in eukaryotes. Proc. Natl. Acad. Sci. USA 106, 20818–20823 (2009).

    Article  CAS  Google Scholar 

  50. Moore, A.D., Bjorklund, A.K., Ekman, D., Bornberg-Bauer, E. & Elofsson, A. Arrangements in the modular evolution of proteins. Trends Biochem. Sci. 33, 444–451 (2008).

    Article  CAS  Google Scholar 

  51. Hausner, W., Lange, U. & Musfeldt, M. Transcription factor S, a cleavage induction factor of the archaeal RNA polymerase. J. Biol. Chem. 275, 12393–12399 (2000).

    Article  CAS  Google Scholar 

  52. Werner, M., Hermann-Le Denmat, S., Treich, I., Sentenac, A. & Thuriaux, P. Effect of mutations in a zinc-binding domain of yeast RNA polymerase C (III) on enzyme function and subunit association. Mol. Cell. Biol. 12, 1087–1095 (1992).

    Article  CAS  Google Scholar 

  53. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  54. De La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 472, 472–494 (1997).

    Article  Google Scholar 

  55. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002).

    Article  Google Scholar 

  56. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  57. Brunger, A.T. Version 1.2 of the Crystallography and NMR system. Nat. Protoc. 2, 2728–2733 (2007).

    Article  CAS  Google Scholar 

  58. Bricogne, G. et al. BUSTER version 2.8.0 (Global Phasing Ltd., Cambridge, UK, 2009).

  59. Teichmann, M. & Seifart, K.H. Physical separation of two different forms of human TFIIIB active in the transcription of the U6 or the VAI gene in vitro. EMBO J. 14, 5974–5983 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities, and we would like to thank staff members for assistance in using beamline ID14-1 and ID29. We also acknowledge the Synchrotron SOLEIL for providing access to Proxima-1 beamline. We are grateful to M. Werner and A. Delprato for critical reading of the manuscript and C. Monfoulet for technical assistance. This work was supported by an internal grant from the Institut Européen de Chimie et Biologie and the University of Bordeaux 2 (S.F. and M.T.) and by grants from the Ligue National Contre le Cancer, comités de Gironde et Dordogne (to M.T.). S.L. was supported by a PhD fellowship from the Conseil Régional d'Aquitaine. The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Contributions

S.L. and N.P. purified and crystallized hRPC62. S.L., P.L. and S.F. determined the crystal structure of hRPC62. A.B. performed the bioinformatics analysis. H.D.-O., L.E.-A. and S.F. conducted functional assays. M.T. contributed to manuscript preparation. S.F. designed, supervised research and wrote the manuscript.

Corresponding author

Correspondence to Sébastien Fribourg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Methods (PDF 4226 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lefèvre, S., Dumay-Odelot, H., El-Ayoubi, L. et al. Structure-function analysis of hRPC62 provides insights into RNA polymerase III transcription initiation. Nat Struct Mol Biol 18, 352–358 (2011). https://doi.org/10.1038/nsmb.1996

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1996

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing