Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visualization of codon-dependent conformational rearrangements during translation termination

Abstract

Although the recognition of stop codons by class 1 release factors (RFs) on the ribosome takes place with extremely high fidelity, the molecular mechanisms behind this remarkable process are poorly understood. Here we performed structural probing experiments with Fe(II)-derivatized RFs to compare the conformations of cognate and near-cognate ribosome termination complexes. The structural differences that we document provide an unprecedented view of how authentic stop-codon recognition is signaled to the large subunit of the ribosome. These events initiate with very close interactions between RF and the small-subunit decoding center, lead to increased interactions between the switch loop of the RF and specific regions of the subunit interface and end in the adoption of the precise orientation of the RF for maximal catalytic activity in the large-subunit peptidyl transferase center.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Directed hydroxyl radical probing of the interaction between the codon-recognition domain of RF1 and the ribosome in complexes programmed with various codons in the A site.
Figure 2: Directed hydroxyl radical probing of the ribosome environment of the switch loop of RF1 in ribosome complexes programmed with various codons in the A site.
Figure 3: Directed hydroxyl radical probing of the ribosome environment of the catalytic motif Gly-Gly-Gln of RF1 in ribosome complexes programmed with various codons in the A site.
Figure 4: Cartoon representation of structural rearrangements in ribosome complexes.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Youngman, E.M., McDonald, M.E. & Green, R. Peptide release on the ribosome: mechanism and implications for translational control. Annu. Rev. Microbiol. 62, 353–373 (2008).

    Article  CAS  Google Scholar 

  2. Zaher, H.S. & Green, R. Fidelity at the molecular level: lessons from protein synthesis. Cell 136, 746–762 (2009).

    Article  CAS  Google Scholar 

  3. Ogle, J.M. & Ramakrishnan, V. Structural insights into translational fidelity. Annu. Rev. Biochem. 74, 129–177 (2005).

    Article  CAS  Google Scholar 

  4. Ogle, J.M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902 (2001).

    Article  CAS  Google Scholar 

  5. Ogle, J.M., Murphy, F.V., Tarry, M.J. & Ramakrishnan, V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111, 721–732 (2002).

    Article  CAS  Google Scholar 

  6. Jorgensen, F., Adamski, F.M., Tate, W.P. & Kurland, C.G. Release factor-dependent false stops are infrequent in Escherichia coli. J. Mol. Biol. 230, 41–50 (1993).

    Article  CAS  Google Scholar 

  7. Freistroffer, D.V., Kwiatkowski, M., Buckingham, R.H. & Ehrenberg, M. The accuracy of codon recognition by polypeptide release factors. Proc. Natl. Acad. Sci. USA 97, 2046–2051 (2000).

    Article  CAS  Google Scholar 

  8. Youngman, E.M., He, S.L., Nikstad, L.J. & Green, R. Stop codon recognition by release factors induces structural rearrangement of the ribosomal decoding center that is productive for peptide release. Mol. Cell 28, 533–543 (2007).

    Article  CAS  Google Scholar 

  9. Weixlbaumer, A. et al. Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322, 953–956 (2008).

    Article  CAS  Google Scholar 

  10. Laurberg, M. et al. Structural basis for translation termination on the 70S ribosome. Nature 454, 852–857 (2008).

    Article  CAS  Google Scholar 

  11. Korostelev, A. et al. Crystal structure of a translation termination complex formed with release factor RF2. Proc. Natl. Acad. Sci. USA 105, 19684–19689 (2008).

    Article  CAS  Google Scholar 

  12. Shin, D.H. et al. Structural analyses of peptide release factor 1 from Thermotoga maritima reveal domain flexibility required for its interaction with the ribosome. J. Mol. Biol. 341, 227–239 (2004).

    Article  CAS  Google Scholar 

  13. Fraser, C.S., Hershey, J.W. & Doudna, J.A. The pathway of hepatitis C virus mRNA recruitment to the human ribosome. Nat. Struct. Mol. Biol. 16, 397–404 (2009).

    Article  CAS  Google Scholar 

  14. Spanggord, R.J., Siu, F., Ke, A. & Doudna, J.A. RNA-mediated interaction between the peptide-binding and GTPase domains of the signal recognition particle. Nat. Struct. Mol. Biol. 12, 1116–1122 (2005).

    Article  CAS  Google Scholar 

  15. Wilson, K.S., Ito, K., Noller, H.F. & Nakamura, Y. Functional sites of interaction between release factor RF1 and the ribosome. Nat. Struct. Biol. 7, 866–870 (2000).

    Article  CAS  Google Scholar 

  16. Culver, G.M. & Noller, H.F. Directed hydroxyl radical probing of RNA from iron(II) tethered to proteins in ribonucleoprotein complexes. Methods Enzymol. 318, 461–475 (2000).

    Article  CAS  Google Scholar 

  17. Moazed, D., Stern, S. & Noller, H.F. Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. J. Mol. Biol. 187, 399–416 (1986).

    Article  CAS  Google Scholar 

  18. Ledoux, S. & Uhlenbeck, O.C. [3′-32P]-labeling tRNA with nucleotidyltransferase for assaying aminoacylation and peptide bond formation. Methods 44, 74–80 (2008).

    Article  CAS  Google Scholar 

  19. Silverman, J.A. & Harbury, P.B. Rapid mapping of protein structure, interactions, and ligand binding by misincorporation proton-alkyl exchange. J. Biol. Chem. 277, 30968–30975 (2002).

    Article  CAS  Google Scholar 

  20. Yusupov, M.M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science 292, 883–896 (2001).

    Article  CAS  Google Scholar 

  21. Ito, K., Uno, M. & Nakamura, Y. A tripeptide 'anticodon' deciphers stop codons in messenger RNA. Nature 403, 680–684 (2000).

    Article  CAS  Google Scholar 

  22. Sternberg, S.H., Fei, J., Prywes, N., McGrath, K.A. & Gonzalez, R.L. Jr. Translation factors direct intrinsic ribosome dynamics during translation termination and ribosome recycling. Nat. Struct. Mol. Biol. 16, 861–868 (2009).

    Article  CAS  Google Scholar 

  23. Sanbonmatsu, K.Y., Joseph, S. & Tung, C.S. Simulating movement of tRNA into the ribosome during decoding. Proc. Natl. Acad. Sci. USA 102, 15854–15859 (2005).

    Article  CAS  Google Scholar 

  24. Freistroffer, D.V., Pavlov, M.Y., MacDougall, J., Buckingham, R.H. & Ehrenberg, M. Release factor RF3 in E. coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. EMBO J. 16, 4126–4133 (1997).

    Article  CAS  Google Scholar 

  25. Cannone, J.J. et al. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3, 2 (2002).

    Article  Google Scholar 

  26. Moazed, D. & Noller, H.F. Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes. Cell 47, 985–994 (1986).

    Article  CAS  Google Scholar 

  27. Dorner, S., Brunelle, J.L., Sharma, D. & Green, R. The hybrid state of tRNA binding is an authentic translation elongation intermediate. Nat. Struct. Mol. Biol. 13, 234–241 (2006).

    Article  CAS  Google Scholar 

  28. Brunelle, J.L., Youngman, E.M., Sharma, D. & Green, R. The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity. RNA 12, 33–39 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Youngman, H. Zaher, S. Djuranovic and N. Guydosh for comments on the manuscript, the US National Institutes of Health for funding of the project and the Howard Hughes Medical Institute for salary support to R.G.

Author information

Authors and Affiliations

Authors

Contributions

S.L.H. and R.G. designed the experiments; S.L.H. performed the experiments; S.L.H. and R.G. discussed results and contributed to the manuscript.

Corresponding author

Correspondence to Rachel Green.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 9210 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, S., Green, R. Visualization of codon-dependent conformational rearrangements during translation termination. Nat Struct Mol Biol 17, 465–470 (2010). https://doi.org/10.1038/nsmb.1766

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1766

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing