Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cabin1 restrains p53 activity on chromatin

Abstract

The tumor suppressor p53 has been proposed to bind target promoters upon genotoxic stress. However, recent evidence shows that p53 occupies some target promoters without such stress, suggesting that a negative regulator might render p53 transcriptionally inactive on these promoters. Here we show that calcineurin binding protein 1 (Cabin1) is a negative regulator of p53. Downregulation of Cabin1 induces activation of a subset of p53 target genes. Cabin1 physically interacts with p53 on these target promoters and represses p53 transcriptional activity in the absence of genotoxic stress, by regulating histone modification and p53 acetylation marks. Knockdown of Cabin1 retards cell growth and promotes cell death after DNA damage in a p53-dependent manner. Thus, Cabin1 inhibits p53 function on chromatin in the quiescent state; the presence of inactive p53 on some promoters might allow a prompt response upon DNA damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cabin1 regulates the mRNA level of a subset of p53 target genes.
Figure 2: CABIN1 physically interacts with p53.
Figure 3: CABIN1 occupies a subset of p53 target promoters in the absence of genotoxic stress.
Figure 4: CABIN1 dissociates from promoters upon genotoxic stress.
Figure 5: CABIN1 regulates both histone marks on p53 target promoters and the acetylation of p53.
Figure 6: Knockdown of CABIN1 retards cell growth and promotes cell death on DNA damage.
Figure 7: Mechanism of negative regulation of p53 by Cabin1.

Similar content being viewed by others

References

  1. Vogelstein, B., Lane, D. & Levine, A.J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Riley, T., Sontag, E., Chen, P. & Levine, A. Transcriptional control of human p53-regulated genes. Nature 9, 402–412 (2008).

    CAS  Google Scholar 

  3. Aylon, Y. & Oren, M. Living with p53, dying of p53. Cell 130, 597–600 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Das, S., Boswell, S.A., Aaronson, S.A. & Lee, S.W. p53 promoter selection. Cell Cycle 7, 154–157 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Olsson, A., Manz1, C., Strasser, A. & Villunger, A. How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ. 14, 1561–1575 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Kaeser, M.D. & Iggo, R.D. Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo. Proc. Natl. Acad. Sci. USA 99, 95–100 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Espinosa, J.M., Verdun, R.E. & Emerson, B.M. p53 Functions through stress- and promoter-specific recruitment of transcription initiation component before and after DNA damage. Mol. Cell 12, 1015–1027 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Jackson, J.G. & Pereira-Smith, O.M. p53 is preferentially recruited to the promoters of growth arrest gene p21 and Gadd45 during replicative senescence of normal human fibroblasts. Cancer Res. 66, 8356–8360 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Sun, L. et al. Cabin1, a negative regulator for calcineurin signaling in T lymphocytes. Immunity 8, 703–711 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Youn, H.D., Sun, L., Prywes, R. & Liu, J.O. Apoptosis of T cells mediated by Ca2+-induced release of the transcription factor MEF2. Science 286, 790–793 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Youn, H.D., Chatila, T.A. & Liu, J.O. Integration of calcineurin and MEF2 signals by the coactivator p300 during T-cell apoptosis. EMBO J. 19, 4323–4331 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Friday, B.B., Horsley, V. & Pavlath, G.K. Calcineurin activity is required for the initiation of skeletal muscle differentiation. J. Cell Biol. 149, 657–666 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Taigen, T., De Windt, L.J., Lim, H.W. & Molkentin, J.D. Targeted inhibition of calcineurin prevents agonist-induced cardiomyocyte hypertrophy. Proc. Natl. Acad. Sci. USA 97, 1196–1201 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lai, M.M., Luo, H.R., Burnett, P.E., Hong, J.J. & Synder, S.H. The calcineurin-binding protein cain is a negative regulator of synaptic vesicle endocytosis. J. Biol. Chem. 275, 34017–34020 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Youn, H.D. & Liu, J.O. Cabin1 represses MEF2-dependent Nur77 expression and T cell apoptosis by controlling association of histone deacetylases and acetylase with MEF2. Immunity 13, 85–94 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Jang, H., Choi, D.E., Kim, H., Cho, E.J. & Youn, H.D. Cabin1 represses MEF2 transcriptional activity by association with a methyltransferase, SUV39H1. J. Biol. Chem. 282, 11172–11179 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Esau, C. et al. Deletion of calcineurin and MEF2 binding domain of Cabin1 results in enhanced cytokine gene expression in T cells. J. Exp. Med. 194, 1449–1459 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoffman, W.H., Biade, S., Zilfou, J.T., Chen, J. & Murphy, M. Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J. Biol. Chem. 277, 3247–3257 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Godar, S. et al. Growth-inhibitory and tumor-suppressive functions of p53 depend on its repression of CD44 expression. Cell 134, 62–73 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zilfou, J.T., Hoffman, W.H., Sank, M., George, D.L. & Murphy, M. The corepressor mSin3a interacts with the proline-rich domain of p53 and protects p53 from proteasome-mediated degradation. Mol. Cell. Biol. 21, 3974–3985 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tang, Y., Zhoa, W., Chen, Y., Zhao, Y. & Gu, W. Acetylation is indispensable for p53 activation. Cell 133, 612–626 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sims, R.J. III, Nishioka, K. & Reinberg, D. Histone lysine methylation: a signature for chromatin function. Trends Genet. 19, 629–639 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Luo, J. et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107, 137–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Vaziri, H. et al. hSir2 functions as an NAD-dependent p53 deacetylase. Cell 107, 149–159 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Huang, J. et al. Repression of p53 activity by Smyd2-mediated methylation. Nature 444, 629–632 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Huang, J. et al. p53 is regulated by the lysine demethylase LSD1. Nature 449, 105–108 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Bergamaschi, D. et al. iASPP preferentially binds p53 proline-rich region and modulates apoptotic function of codon 72-polymorphic p53. Nat. Genet. 38, 1133–1141 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Mantovani, F. et al. The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nat. Struct. Mol. Biol. 14, 912–920 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Hublitz, P. et al. NIR is a novel INHAT repressor that modulates the transcriptional activity of p53. Genes Dev. 19, 2912–2924 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dohi, Y. et al. Bach1 inhibits oxidative stress-induced cellular senescence by impeding p53 function on chromatin. Nat. Struct. Mol. Biol. 15, 1246–1254 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Sullivan, A. & Lu, X. ASPP: a new family of oncogenes and tumour suppressor genes. Br. J. Cancer 96, 196–200 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Das, S., Raj, L., Zhao, B., Kimura, Y., Bernstein, A., Aaronson, S.A. & Lee, S.W. Hzf determines cell survival upon genotoxic stress by modulating p53 transactivation. Cell 130, 624–637 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tanaka, T., Ohkubo, S., Tatsuno, I. & Prives, C. hCAS/CSE1L associates with chromatin and regulates expression of select p53 target genes. Cell 130, 638–650 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Roe, J.S. et al. p53 stabilization and transactivation by a von Hippel-Lindau protein. Mol. Cell 22, 395–405 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to S.T. Kim (Sungkyunkwan University) for the KDM1 expression vector and K.L. Wright (University of South Florida) for the EHMT2 expression vector. We thank B. Vogelstein (The Johns Hopkins University Medical Institutions) for the HCT116 (TP53+/+) and HCT116 (TP53−/−) lines. This work was supported by KOSEF grants from the Korean National Research Laboratory (ROA-2007-000-20002-0) and the Center for Functional Analysis for Human Genome (3344-20060070) to H.-D.Y. and Korean Research Foundation grants (KRF-C00257) to H.-D.Y. and E.-J.C. S.-Y.C. was supported by the Seoul Science Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

H.J. planned the research, performed almost all the experiments and wrote the manuscript; S.-Y.C. performed some of the immunoprecipitation experiments; E.-J.C. supervised the research; H.-D.Y. planned and supervised the research and wrote the manuscript.

Corresponding author

Correspondence to Hong-Duk Youn.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1 and 2 (PDF 640 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, H., Choi, SY., Cho, EJ. et al. Cabin1 restrains p53 activity on chromatin. Nat Struct Mol Biol 16, 910–915 (2009). https://doi.org/10.1038/nsmb.1657

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1657

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing